mirror of
https://github.com/RYDE-WORK/lnp_ml.git
synced 2026-01-19 11:53:13 +08:00
161 lines
4.5 KiB
Markdown
161 lines
4.5 KiB
Markdown
# lnp-ml
|
||
|
||
<a target="_blank" href="https://cookiecutter-data-science.drivendata.org/">
|
||
<img src="https://img.shields.io/badge/CCDS-Project%20template-328F97?logo=cookiecutter" />
|
||
</a>
|
||
|
||
LNP(脂质纳米颗粒)药物递送性能预测模型。
|
||
|
||
## 快速开始
|
||
|
||
### 1. 安装环境
|
||
|
||
```bash
|
||
pixi install
|
||
pixi shell
|
||
```
|
||
|
||
### 2. 数据处理
|
||
|
||
```bash
|
||
# 清洗原始数据 (raw -> interim)
|
||
make clean_data
|
||
|
||
# 处理内部数据集 (interim -> processed)
|
||
make data
|
||
|
||
# 处理外部预训练数据 (external -> processed)
|
||
make data_pretrain
|
||
```
|
||
|
||
### 3. 训练模型
|
||
|
||
**方式 A:直接训练(从零开始)**
|
||
|
||
```bash
|
||
make train
|
||
```
|
||
|
||
**方式 B:预训练 + 微调(推荐)**
|
||
|
||
利用外部 LiON 数据集(约 9000 条)进行预训练,再在内部数据上微调:
|
||
|
||
```bash
|
||
# Step 1: 处理外部数据
|
||
make data_pretrain
|
||
|
||
# Step 2: 在外部数据上预训练 backbone + delivery head
|
||
make pretrain
|
||
|
||
# Step 3: 加载预训练权重,在内部数据上多任务微调
|
||
make finetune
|
||
```
|
||
|
||
**方式 C:超参数调优**
|
||
|
||
```bash
|
||
make tune
|
||
```
|
||
|
||
### 4. 测试与预测
|
||
|
||
```bash
|
||
# 在测试集上评估
|
||
make test
|
||
|
||
# 生成预测结果
|
||
make predict
|
||
```
|
||
|
||
## 训练流程详解
|
||
|
||
### 预训练 (Pretrain)
|
||
|
||
在外部 LiON 数据上,仅训练 `quantified_delivery` 任务:
|
||
|
||
```bash
|
||
# 1. 先处理外部数据
|
||
python scripts/process_external.py
|
||
|
||
# 2. 预训练
|
||
python -m lnp_ml.modeling.pretrain \
|
||
--train-path data/processed/train_pretrain.parquet \
|
||
--val-path data/processed/val_pretrain.parquet \
|
||
--epochs 50 \
|
||
--lr 1e-4
|
||
```
|
||
|
||
产出:
|
||
- `data/processed/train_pretrain.parquet`: 处理后的训练数据
|
||
- `data/processed/val_pretrain.parquet`: 处理后的验证数据
|
||
- `models/pretrain_delivery.pt`: backbone + delivery head 权重
|
||
- `models/pretrain_history.json`: 训练历史
|
||
|
||
### 微调 (Finetune)
|
||
|
||
加载预训练权重,在内部多任务数据上训练:
|
||
|
||
```bash
|
||
python -m lnp_ml.modeling.train \
|
||
--init-from-pretrain models/pretrain_delivery.pt \
|
||
--load-delivery-head # 可选:是否加载 delivery head 权重
|
||
```
|
||
|
||
产出:
|
||
- `models/model.pt`: 完整模型权重
|
||
- `models/history.json`: 训练历史
|
||
|
||
## Project Organization
|
||
|
||
```
|
||
├── LICENSE <- Open-source license if one is chosen
|
||
├── Makefile <- Makefile with convenience commands like `make data` or `make train`
|
||
├── README.md <- The top-level README for developers using this project.
|
||
├── data
|
||
│ ├── external <- Data from third party sources.
|
||
│ ├── interim <- Intermediate data that has been transformed.
|
||
│ ├── processed <- The final, canonical data sets for modeling.
|
||
│ └── raw <- The original, immutable data dump.
|
||
│
|
||
├── docs <- A default mkdocs project; see www.mkdocs.org for details
|
||
│
|
||
├── models <- Trained and serialized models, model predictions, or model summaries
|
||
│
|
||
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
|
||
│ the creator's initials, and a short `-` delimited description, e.g.
|
||
│ `1.0-jqp-initial-data-exploration`.
|
||
│
|
||
├── pyproject.toml <- Project configuration file with package metadata for
|
||
│ lnp_ml and configuration for tools like black
|
||
│
|
||
├── references <- Data dictionaries, manuals, and all other explanatory materials.
|
||
│
|
||
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
|
||
│ └── figures <- Generated graphics and figures to be used in reporting
|
||
│
|
||
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
|
||
│ generated with `pip freeze > requirements.txt`
|
||
│
|
||
├── setup.cfg <- Configuration file for flake8
|
||
│
|
||
└── lnp_ml <- Source code for use in this project.
|
||
│
|
||
├── __init__.py <- Makes lnp_ml a Python module
|
||
│
|
||
├── config.py <- Store useful variables and configuration
|
||
│
|
||
├── dataset.py <- Scripts to download or generate data
|
||
│
|
||
├── features.py <- Code to create features for modeling
|
||
│
|
||
├── modeling
|
||
│ ├── __init__.py
|
||
│ ├── predict.py <- Code to run model inference with trained models
|
||
│ └── train.py <- Code to train models
|
||
│
|
||
└── plots.py <- Code to create visualizations
|
||
```
|
||
|
||
--------
|
||
|