mirror of
https://github.com/RYDE-WORK/lnp_ml.git
synced 2026-01-19 11:53:13 +08:00
lnp-ml
LNP(脂质纳米颗粒)药物递送性能预测模型。
快速开始
1. 安装环境
pixi install
pixi shell
2. 数据处理
# 清洗原始数据 (raw -> interim)
make clean_data
# 处理内部数据集 (interim -> processed)
make data
# 处理外部预训练数据 (external -> processed)
make data_pretrain
3. 训练模型
方式 A:直接训练(从零开始)
make train
方式 B:预训练 + 微调(推荐)
利用外部 LiON 数据集(约 9000 条)进行预训练,再在内部数据上微调:
# Step 1: 处理外部数据
make data_pretrain
# Step 2: 在外部数据上预训练 backbone + delivery head
make pretrain
# Step 3: 加载预训练权重,在内部数据上多任务微调
make finetune
方式 C:超参数调优
make tune
4. 测试与预测
# 在测试集上评估
make test
# 生成预测结果
make predict
训练流程详解
预训练 (Pretrain)
在外部 LiON 数据上,仅训练 quantified_delivery 任务:
# 1. 先处理外部数据
python scripts/process_external.py
# 2. 预训练
python -m lnp_ml.modeling.pretrain \
--train-path data/processed/train_pretrain.parquet \
--val-path data/processed/val_pretrain.parquet \
--epochs 50 \
--lr 1e-4
产出:
data/processed/train_pretrain.parquet: 处理后的训练数据data/processed/val_pretrain.parquet: 处理后的验证数据models/pretrain_delivery.pt: backbone + delivery head 权重models/pretrain_history.json: 训练历史
微调 (Finetune)
加载预训练权重,在内部多任务数据上训练:
python -m lnp_ml.modeling.train \
--init-from-pretrain models/pretrain_delivery.pt \
--load-delivery-head # 可选:是否加载 delivery head 权重
产出:
models/model.pt: 完整模型权重models/history.json: 训练历史
Project Organization
├── LICENSE <- Open-source license if one is chosen
├── Makefile <- Makefile with convenience commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── external <- Data from third party sources.
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
│
├── docs <- A default mkdocs project; see www.mkdocs.org for details
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.
│
├── pyproject.toml <- Project configuration file with package metadata for
│ lnp_ml and configuration for tools like black
│
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── setup.cfg <- Configuration file for flake8
│
└── lnp_ml <- Source code for use in this project.
│
├── __init__.py <- Makes lnp_ml a Python module
│
├── config.py <- Store useful variables and configuration
│
├── dataset.py <- Scripts to download or generate data
│
├── features.py <- Code to create features for modeling
│
├── modeling
│ ├── __init__.py
│ ├── predict.py <- Code to run model inference with trained models
│ └── train.py <- Code to train models
│
└── plots.py <- Code to create visualizations
Languages
Python
96.7%
Makefile
3.3%