MiniCPM/quantize/bnb_quantize.py
2024-07-15 14:49:32 +08:00

58 lines
2.3 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
the script will use bitandbytes to quantize the MiniCPM language model.
the be quantized model can be finetuned by MiniCPM or not.
you only need to set the model_path 、save_path and run bash code
cd MiniCPM
python quantize/bnb_quantize.py
you will get the quantized model in save_path、quantized_model test time and gpu usage
"""
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import time
import torch
import GPUtil
import os
model_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16" # 模型下载地址
save_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16_int4" # 量化模型保存地址
device = "cuda" if torch.cuda.is_available() else "cpu"
# 创建一个配置对象来指定量化参数
quantization_config = BitsAndBytesConfig(
load_in_4bit=True, # 是否进行4bit量化
load_in_8bit=False, # 是否进行8bit量化
bnb_4bit_compute_dtype=torch.float16, # 计算精度设置
bnb_4bit_quant_storage=torch.uint8, # 量化权重的储存格式
bnb_4bit_quant_type="nf4", # 量化格式这里用的是正太分布的int4
bnb_4bit_use_double_quant=True, # 是否采用双量化即对zeropoint和scaling参数进行量化
llm_int8_enable_fp32_cpu_offload=False, # 是否llm使用int8cpu上保存的参数使用fp32
llm_int8_has_fp16_weight=False, # 是否启用混合精度
#llm_int8_skip_modules=["out_proj", "kv_proj", "lm_head"], # 不进行量化的模块
llm_int8_threshold=6.0, # llm.int8()算法中的离群值,根据这个值区分是否进行量化
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map=device, # 分配模型到device
quantization_config=quantization_config,
trust_remote_code=True,
)
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
start = time.time()
response = model.chat(tokenizer, "<用户>给我讲一个故事<AI>",history=[], temperature=0.5, top_p=0.8, repetition_penalty=1.02) # 模型推理
print("量化后输出", response)
print("量化后推理用时", time.time() - start)
print(f"量化后显存占用: {round(gpu_usage/1024,2)}GB")
# 保存模型和分词器
os.makedirs(save_path, exist_ok=True)
model.save_pretrained(save_path, safe_serialization=True)
tokenizer.save_pretrained(save_path)