增加了bnb的量化demo

This commit is contained in:
root 2024-07-15 14:49:32 +08:00
parent 23a52259de
commit 08514cd9ec

57
quantize/bnb_quantize.py Normal file
View File

@ -0,0 +1,57 @@
"""
the script will use bitandbytes to quantize the MiniCPM language model.
the be quantized model can be finetuned by MiniCPM or not.
you only need to set the model_path save_path and run bash code
cd MiniCPM
python quantize/bnb_quantize.py
you will get the quantized model in save_pathquantized_model test time and gpu usage
"""
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import time
import torch
import GPUtil
import os
model_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16" # 模型下载地址
save_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16_int4" # 量化模型保存地址
device = "cuda" if torch.cuda.is_available() else "cpu"
# 创建一个配置对象来指定量化参数
quantization_config = BitsAndBytesConfig(
load_in_4bit=True, # 是否进行4bit量化
load_in_8bit=False, # 是否进行8bit量化
bnb_4bit_compute_dtype=torch.float16, # 计算精度设置
bnb_4bit_quant_storage=torch.uint8, # 量化权重的储存格式
bnb_4bit_quant_type="nf4", # 量化格式这里用的是正太分布的int4
bnb_4bit_use_double_quant=True, # 是否采用双量化即对zeropoint和scaling参数进行量化
llm_int8_enable_fp32_cpu_offload=False, # 是否llm使用int8cpu上保存的参数使用fp32
llm_int8_has_fp16_weight=False, # 是否启用混合精度
#llm_int8_skip_modules=["out_proj", "kv_proj", "lm_head"], # 不进行量化的模块
llm_int8_threshold=6.0, # llm.int8()算法中的离群值,根据这个值区分是否进行量化
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map=device, # 分配模型到device
quantization_config=quantization_config,
trust_remote_code=True,
)
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
start = time.time()
response = model.chat(tokenizer, "<用户>给我讲一个故事<AI>",history=[], temperature=0.5, top_p=0.8, repetition_penalty=1.02) # 模型推理
print("量化后输出", response)
print("量化后推理用时", time.time() - start)
print(f"量化后显存占用: {round(gpu_usage/1024,2)}GB")
# 保存模型和分词器
os.makedirs(save_path, exist_ok=True)
model.save_pretrained(save_path, safe_serialization=True)
tokenizer.save_pretrained(save_path)