From 08514cd9ec4628a9d7bd457ad1a7c920ac33e512 Mon Sep 17 00:00:00 2001 From: root <403644786@qq.com> Date: Mon, 15 Jul 2024 14:49:32 +0800 Subject: [PATCH] =?UTF-8?q?=E5=A2=9E=E5=8A=A0=E4=BA=86bnb=E7=9A=84?= =?UTF-8?q?=E9=87=8F=E5=8C=96demo?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- quantize/bnb_quantize.py | 57 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 57 insertions(+) create mode 100644 quantize/bnb_quantize.py diff --git a/quantize/bnb_quantize.py b/quantize/bnb_quantize.py new file mode 100644 index 0000000..c32cea6 --- /dev/null +++ b/quantize/bnb_quantize.py @@ -0,0 +1,57 @@ +""" +the script will use bitandbytes to quantize the MiniCPM language model. +the be quantized model can be finetuned by MiniCPM or not. +you only need to set the model_path 、save_path and run bash code + +cd MiniCPM +python quantize/bnb_quantize.py + +you will get the quantized model in save_path、quantized_model test time and gpu usage +""" + + +import torch +from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig +import time +import torch +import GPUtil +import os + +model_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16" # 模型下载地址 +save_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16_int4" # 量化模型保存地址 +device = "cuda" if torch.cuda.is_available() else "cpu" + +# 创建一个配置对象来指定量化参数 +quantization_config = BitsAndBytesConfig( + load_in_4bit=True, # 是否进行4bit量化 + load_in_8bit=False, # 是否进行8bit量化 + bnb_4bit_compute_dtype=torch.float16, # 计算精度设置 + bnb_4bit_quant_storage=torch.uint8, # 量化权重的储存格式 + bnb_4bit_quant_type="nf4", # 量化格式,这里用的是正太分布的int4 + bnb_4bit_use_double_quant=True, # 是否采用双量化,即对zeropoint和scaling参数进行量化 + llm_int8_enable_fp32_cpu_offload=False, # 是否llm使用int8,cpu上保存的参数使用fp32 + llm_int8_has_fp16_weight=False, # 是否启用混合精度 + #llm_int8_skip_modules=["out_proj", "kv_proj", "lm_head"], # 不进行量化的模块 + llm_int8_threshold=6.0, # llm.int8()算法中的离群值,根据这个值区分是否进行量化 +) + +tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) +model = AutoModelForCausalLM.from_pretrained( + model_path, + device_map=device, # 分配模型到device + quantization_config=quantization_config, + trust_remote_code=True, +) + +gpu_usage = GPUtil.getGPUs()[0].memoryUsed +start = time.time() +response = model.chat(tokenizer, "<用户>给我讲一个故事",history=[], temperature=0.5, top_p=0.8, repetition_penalty=1.02) # 模型推理 +print("量化后输出", response) +print("量化后推理用时", time.time() - start) +print(f"量化后显存占用: {round(gpu_usage/1024,2)}GB") + + +# 保存模型和分词器 +os.makedirs(save_path, exist_ok=True) +model.save_pretrained(save_path, safe_serialization=True) +tokenizer.save_pretrained(save_path)