""" the script will use bitandbytes to quantize the MiniCPM language model. the be quantized model can be finetuned by MiniCPM or not. you only need to set the model_path 、save_path and run bash code cd MiniCPM python quantize/bnb_quantize.py you will get the quantized model in save_path、quantized_model test time and gpu usage """ import torch from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import time import torch import GPUtil import os model_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16" # 模型下载地址 save_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16_int4" # 量化模型保存地址 device = "cuda" if torch.cuda.is_available() else "cpu" # 创建一个配置对象来指定量化参数 quantization_config = BitsAndBytesConfig( load_in_4bit=True, # 是否进行4bit量化 load_in_8bit=False, # 是否进行8bit量化 bnb_4bit_compute_dtype=torch.float16, # 计算精度设置 bnb_4bit_quant_storage=torch.uint8, # 量化权重的储存格式 bnb_4bit_quant_type="nf4", # 量化格式,这里用的是正太分布的int4 bnb_4bit_use_double_quant=True, # 是否采用双量化,即对zeropoint和scaling参数进行量化 llm_int8_enable_fp32_cpu_offload=False, # 是否llm使用int8,cpu上保存的参数使用fp32 llm_int8_has_fp16_weight=False, # 是否启用混合精度 #llm_int8_skip_modules=["out_proj", "kv_proj", "lm_head"], # 不进行量化的模块 llm_int8_threshold=6.0, # llm.int8()算法中的离群值,根据这个值区分是否进行量化 ) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_path, device_map=device, # 分配模型到device quantization_config=quantization_config, trust_remote_code=True, ) gpu_usage = GPUtil.getGPUs()[0].memoryUsed start = time.time() response = model.chat(tokenizer, "<用户>给我讲一个故事",history=[], temperature=0.5, top_p=0.8, repetition_penalty=1.02) # 模型推理 print("量化后输出", response) print("量化后推理用时", time.time() - start) print(f"量化后显存占用: {round(gpu_usage/1024,2)}GB") # 保存模型和分词器 os.makedirs(save_path, exist_ok=True) model.save_pretrained(save_path, safe_serialization=True) tokenizer.save_pretrained(save_path)