Merge branch 'kvcache-ai:main' into main

This commit is contained in:
Azure 2025-02-14 11:53:52 +08:00 committed by GitHub
commit 95c81eaf01
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 13 additions and 5 deletions

BIN
WeChatGrouop.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 829 KiB

View File

@ -22,10 +22,10 @@ Our vision for KTransformers is to serve as a flexible platform for experimentin
<h2 id="Updates">🔥 Updates</h2>
* **Feb 10, 2025**: Support Deepseek-R1 and V3 on single (24GB VRAM)/multi gpu and 382G DRAM, up to 3~28x speedup. The detailed tutorial is [here](./doc/en/DeepseekR1_V3_tutorial.md).
* **Aug 28, 2024**: Support 1M context under the InternLM2.5-7B-Chat-1M model, utilizing 24GB of VRAM and 150GB of DRAM. The detailed tutorial is [here](./doc/en/long_context_tutorial.md).
* **Feb 10, 2025**: Support Deepseek-R1 and V3 on single (24GB VRAM)/multi gpu and 382G DRAM, up to 3~28x speedup. The detailed tutorial is [here](./en/DeepseekR1_V3_tutorial.md).
* **Aug 28, 2024**: Support 1M context under the InternLM2.5-7B-Chat-1M model, utilizing 24GB of VRAM and 150GB of DRAM. The detailed tutorial is [here](./en/long_context_tutorial.md).
* **Aug 28, 2024**: Decrease DeepseekV2's required VRAM from 21G to 11G.
* **Aug 15, 2024**: Update detailed [TUTORIAL](doc/en/injection_tutorial.md) for injection and multi-GPU.
* **Aug 15, 2024**: Update detailed [TUTORIAL](./en/injection_tutorial.md) for injection and multi-GPU.
* **Aug 14, 2024**: Support llamfile as linear backend.
* **Aug 12, 2024**: Support multiple GPU; Support new model: mixtral 8\*7B and 8\*22B; Support q2k, q3k, q5k dequant on gpu.
* **Aug 9, 2024**: Support windows native.
* **Aug 9, 2024**: Support windows native.

View File

@ -1,4 +1,5 @@
import torch
import asyncio
from transformers import AutoTokenizer, AutoConfig, GenerationConfig
from ktransformers.server.backend.interfaces.transformers import (
TransformersInterface,
@ -70,6 +71,8 @@ class KTransformersInterface(TransformersInterface):
self.model.generation_config.pad_token_id = self.model.generation_config.eos_token_id
self.streamer = TextStreamer(self.tokenizer)
self._infer_lock = asyncio.Lock()
def decode_one_tokens(self):
device_map = self.model.gguf_loader.tensor_device_map
torch_device = get_device("blk.0.self_attn", device_map)
@ -171,4 +174,9 @@ class KTransformersInterface(TransformersInterface):
@property
def active_cache_position(self):
device = self.device_map.get("blk.0.self_attn", {}).get("generate_device", "cuda:0")
return torch.tensor([self.seq_length - 1], device=device)
return torch.tensor([self.seq_length - 1], device=device)
async def inference(self, local_messages, thread_id: str):
async with self._infer_lock:
async for v in super().inference(local_messages, thread_id):
yield v