diff --git a/WeChatGrouop.png b/WeChatGrouop.png
new file mode 100644
index 0000000..6ab99bd
Binary files /dev/null and b/WeChatGrouop.png differ
diff --git a/doc/README.md b/doc/README.md
index 0183497..9c955c2 100644
--- a/doc/README.md
+++ b/doc/README.md
@@ -22,10 +22,10 @@ Our vision for KTransformers is to serve as a flexible platform for experimentin
🔥 Updates
-* **Feb 10, 2025**: Support Deepseek-R1 and V3 on single (24GB VRAM)/multi gpu and 382G DRAM, up to 3~28x speedup. The detailed tutorial is [here](./doc/en/DeepseekR1_V3_tutorial.md).
-* **Aug 28, 2024**: Support 1M context under the InternLM2.5-7B-Chat-1M model, utilizing 24GB of VRAM and 150GB of DRAM. The detailed tutorial is [here](./doc/en/long_context_tutorial.md).
+* **Feb 10, 2025**: Support Deepseek-R1 and V3 on single (24GB VRAM)/multi gpu and 382G DRAM, up to 3~28x speedup. The detailed tutorial is [here](./en/DeepseekR1_V3_tutorial.md).
+* **Aug 28, 2024**: Support 1M context under the InternLM2.5-7B-Chat-1M model, utilizing 24GB of VRAM and 150GB of DRAM. The detailed tutorial is [here](./en/long_context_tutorial.md).
* **Aug 28, 2024**: Decrease DeepseekV2's required VRAM from 21G to 11G.
-* **Aug 15, 2024**: Update detailed [TUTORIAL](doc/en/injection_tutorial.md) for injection and multi-GPU.
+* **Aug 15, 2024**: Update detailed [TUTORIAL](./en/injection_tutorial.md) for injection and multi-GPU.
* **Aug 14, 2024**: Support llamfile as linear backend.
* **Aug 12, 2024**: Support multiple GPU; Support new model: mixtral 8\*7B and 8\*22B; Support q2k, q3k, q5k dequant on gpu.
-* **Aug 9, 2024**: Support windows native.
\ No newline at end of file
+* **Aug 9, 2024**: Support windows native.
diff --git a/ktransformers/server/backend/interfaces/ktransformers.py b/ktransformers/server/backend/interfaces/ktransformers.py
index d228b64..4ceb65d 100644
--- a/ktransformers/server/backend/interfaces/ktransformers.py
+++ b/ktransformers/server/backend/interfaces/ktransformers.py
@@ -1,4 +1,5 @@
import torch
+import asyncio
from transformers import AutoTokenizer, AutoConfig, GenerationConfig
from ktransformers.server.backend.interfaces.transformers import (
TransformersInterface,
@@ -70,6 +71,8 @@ class KTransformersInterface(TransformersInterface):
self.model.generation_config.pad_token_id = self.model.generation_config.eos_token_id
self.streamer = TextStreamer(self.tokenizer)
+ self._infer_lock = asyncio.Lock()
+
def decode_one_tokens(self):
device_map = self.model.gguf_loader.tensor_device_map
torch_device = get_device("blk.0.self_attn", device_map)
@@ -171,4 +174,9 @@ class KTransformersInterface(TransformersInterface):
@property
def active_cache_position(self):
device = self.device_map.get("blk.0.self_attn", {}).get("generate_device", "cuda:0")
- return torch.tensor([self.seq_length - 1], device=device)
\ No newline at end of file
+ return torch.tensor([self.seq_length - 1], device=device)
+
+ async def inference(self, local_messages, thread_id: str):
+ async with self._infer_lock:
+ async for v in super().inference(local_messages, thread_id):
+ yield v
\ No newline at end of file