mirror of
https://github.com/aimingmed/aimingmed-ai.git
synced 2026-02-07 15:53:45 +08:00
Merge pull request #13 from aimingmed/feature/status-batch
status badge added
This commit is contained in:
commit
29d82e7cef
@ -1,4 +1,4 @@
|
|||||||

|
[](https://github.com/aimingmed/aimingmed-ai/actions/workflows/app-testing.yml)
|
||||||
|
|
||||||
## Important note:
|
## Important note:
|
||||||
|
|
||||||
|
|||||||
@ -3,8 +3,8 @@ version: "3.9"
|
|||||||
services:
|
services:
|
||||||
streamlit:
|
streamlit:
|
||||||
build: ./streamlit
|
build: ./streamlit
|
||||||
|
platform: linux/amd64
|
||||||
ports:
|
ports:
|
||||||
- "8501:8501"
|
- "8501:8501"
|
||||||
volumes:
|
volumes:
|
||||||
- ./llmops/src/rag_cot/chroma_db:/app/llmops/src/rag_cot/chroma_db
|
- ./llmops/src/rag_cot/chroma_db:/app/llmops/src/rag_cot/chroma_db
|
||||||
|
|
||||||
|
|||||||
@ -2,9 +2,9 @@ FROM python:3.11-slim
|
|||||||
|
|
||||||
WORKDIR /app/streamlit
|
WORKDIR /app/streamlit
|
||||||
|
|
||||||
COPY Pipfile ./
|
COPY requirements.txt ./
|
||||||
|
|
||||||
RUN pip install pipenv && pipenv install --system --deploy
|
RUN pip install --no-cache-dir -r requirements.txt
|
||||||
|
|
||||||
COPY Chatbot.py .
|
COPY Chatbot.py .
|
||||||
COPY .env .
|
COPY .env .
|
||||||
|
|||||||
@ -25,20 +25,25 @@ def create_chat_completion(response: str, role: str = "assistant") -> ChatComple
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
# @patch("openai.resources.chat.Completions.create")
|
# @patch("langchain_deepseek.ChatDeepSeek.__call__")
|
||||||
# def test_Chatbot(openai_create):
|
# @patch("langchain_google_genai.ChatGoogleGenerativeAI.invoke")
|
||||||
|
# @patch("langchain_community.llms.moonshot.Moonshot.__call__")
|
||||||
|
# def test_Chatbot(moonshot_llm, gemini_llm, deepseek_llm):
|
||||||
# at = AppTest.from_file("Chatbot.py").run()
|
# at = AppTest.from_file("Chatbot.py").run()
|
||||||
# assert not at.exception
|
# assert not at.exception
|
||||||
# at.chat_input[0].set_value("Do you know any jokes?").run()
|
|
||||||
# assert at.info[0].value == "Please add your OpenAI API key to continue."
|
# QUERY = "What is the best treatment for hypertension?"
|
||||||
|
# RESPONSE = "The best treatment for hypertension is..."
|
||||||
# JOKE = "Why did the chicken cross the road? To get to the other side."
|
|
||||||
# openai_create.return_value = create_chat_completion(JOKE)
|
# deepseek_llm.return_value.content = RESPONSE
|
||||||
# at.text_input(key="chatbot_api_key").set_value("sk-...")
|
# gemini_llm.return_value.content = RESPONSE
|
||||||
# at.chat_input[0].set_value("Do you know any jokes?").run()
|
# moonshot_llm.return_value = RESPONSE
|
||||||
# print(at)
|
|
||||||
# assert at.chat_message[1].markdown[0].value == "Do you know any jokes?"
|
# at.chat_input[0].set_value(QUERY).run()
|
||||||
# assert at.chat_message[2].markdown[0].value == JOKE
|
|
||||||
|
# assert any(mock.called for mock in [deepseek_llm, gemini_llm, moonshot_llm])
|
||||||
|
# assert at.chat_message[1].markdown[0].value == QUERY
|
||||||
|
# assert at.chat_message[2].markdown[0].value == RESPONSE
|
||||||
# assert at.chat_message[2].avatar == "assistant"
|
# assert at.chat_message[2].avatar == "assistant"
|
||||||
# assert not at.exception
|
# assert not at.exception
|
||||||
|
|
||||||
|
|||||||
@ -1,33 +0,0 @@
|
|||||||
import streamlit as st
|
|
||||||
import anthropic
|
|
||||||
|
|
||||||
with st.sidebar:
|
|
||||||
anthropic_api_key = st.text_input("Anthropic API Key", key="file_qa_api_key", type="password")
|
|
||||||
"[View the source code](https://github.com/streamlit/llm-examples/blob/main/pages/1_File_Q%26A.py)"
|
|
||||||
"[](https://codespaces.new/streamlit/llm-examples?quickstart=1)"
|
|
||||||
|
|
||||||
st.title("📝 File Q&A with Anthropic")
|
|
||||||
uploaded_file = st.file_uploader("Upload an article", type=("txt", "md"))
|
|
||||||
question = st.text_input(
|
|
||||||
"Ask something about the article",
|
|
||||||
placeholder="Can you give me a short summary?",
|
|
||||||
disabled=not uploaded_file,
|
|
||||||
)
|
|
||||||
|
|
||||||
if uploaded_file and question and not anthropic_api_key:
|
|
||||||
st.info("Please add your Anthropic API key to continue.")
|
|
||||||
|
|
||||||
if uploaded_file and question and anthropic_api_key:
|
|
||||||
article = uploaded_file.read().decode()
|
|
||||||
prompt = f"""{anthropic.HUMAN_PROMPT} Here's an article:\n\n<article>
|
|
||||||
{article}\n\n</article>\n\n{question}{anthropic.AI_PROMPT}"""
|
|
||||||
|
|
||||||
client = anthropic.Client(api_key=anthropic_api_key)
|
|
||||||
response = client.completions.create(
|
|
||||||
prompt=prompt,
|
|
||||||
stop_sequences=[anthropic.HUMAN_PROMPT],
|
|
||||||
model="claude-v1", # "claude-2" for Claude 2 model
|
|
||||||
max_tokens_to_sample=100,
|
|
||||||
)
|
|
||||||
st.write("### Answer")
|
|
||||||
st.write(response.completion)
|
|
||||||
@ -1,48 +0,0 @@
|
|||||||
import streamlit as st
|
|
||||||
|
|
||||||
from langchain.agents import initialize_agent, AgentType
|
|
||||||
from langchain.callbacks import StreamlitCallbackHandler
|
|
||||||
from langchain.chat_models import ChatOpenAI
|
|
||||||
from langchain.tools import DuckDuckGoSearchRun
|
|
||||||
|
|
||||||
with st.sidebar:
|
|
||||||
openai_api_key = st.text_input(
|
|
||||||
"OpenAI API Key", key="langchain_search_api_key_openai", type="password"
|
|
||||||
)
|
|
||||||
"[Get an OpenAI API key](https://platform.openai.com/account/api-keys)"
|
|
||||||
"[View the source code](https://github.com/streamlit/llm-examples/blob/main/pages/2_Chat_with_search.py)"
|
|
||||||
"[](https://codespaces.new/streamlit/llm-examples?quickstart=1)"
|
|
||||||
|
|
||||||
st.title("🔎 LangChain - Chat with search")
|
|
||||||
|
|
||||||
"""
|
|
||||||
In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app.
|
|
||||||
Try more LangChain 🤝 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent).
|
|
||||||
"""
|
|
||||||
|
|
||||||
if "messages" not in st.session_state:
|
|
||||||
st.session_state["messages"] = [
|
|
||||||
{"role": "assistant", "content": "Hi, I'm a chatbot who can search the web. How can I help you?"}
|
|
||||||
]
|
|
||||||
|
|
||||||
for msg in st.session_state.messages:
|
|
||||||
st.chat_message(msg["role"]).write(msg["content"])
|
|
||||||
|
|
||||||
if prompt := st.chat_input(placeholder="Who won the Women's U.S. Open in 2018?"):
|
|
||||||
st.session_state.messages.append({"role": "user", "content": prompt})
|
|
||||||
st.chat_message("user").write(prompt)
|
|
||||||
|
|
||||||
if not openai_api_key:
|
|
||||||
st.info("Please add your OpenAI API key to continue.")
|
|
||||||
st.stop()
|
|
||||||
|
|
||||||
llm = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=openai_api_key, streaming=True)
|
|
||||||
search = DuckDuckGoSearchRun(name="Search")
|
|
||||||
search_agent = initialize_agent(
|
|
||||||
[search], llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True
|
|
||||||
)
|
|
||||||
with st.chat_message("assistant"):
|
|
||||||
st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False)
|
|
||||||
response = search_agent.run(st.session_state.messages, callbacks=[st_cb])
|
|
||||||
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
||||||
st.write(response)
|
|
||||||
@ -1,29 +0,0 @@
|
|||||||
import streamlit as st
|
|
||||||
from langchain.llms import OpenAI
|
|
||||||
from langchain.prompts import PromptTemplate
|
|
||||||
|
|
||||||
st.title("🦜🔗 Langchain - Blog Outline Generator App")
|
|
||||||
|
|
||||||
openai_api_key = st.sidebar.text_input("OpenAI API Key", type="password")
|
|
||||||
|
|
||||||
|
|
||||||
def blog_outline(topic):
|
|
||||||
# Instantiate LLM model
|
|
||||||
llm = OpenAI(model_name="text-davinci-003", openai_api_key=openai_api_key)
|
|
||||||
# Prompt
|
|
||||||
template = "As an experienced data scientist and technical writer, generate an outline for a blog about {topic}."
|
|
||||||
prompt = PromptTemplate(input_variables=["topic"], template=template)
|
|
||||||
prompt_query = prompt.format(topic=topic)
|
|
||||||
# Run LLM model
|
|
||||||
response = llm(prompt_query)
|
|
||||||
# Print results
|
|
||||||
return st.info(response)
|
|
||||||
|
|
||||||
|
|
||||||
with st.form("myform"):
|
|
||||||
topic_text = st.text_input("Enter prompt:", "")
|
|
||||||
submitted = st.form_submit_button("Submit")
|
|
||||||
if not openai_api_key:
|
|
||||||
st.info("Please add your OpenAI API key to continue.")
|
|
||||||
elif submitted:
|
|
||||||
blog_outline(topic_text)
|
|
||||||
@ -1,65 +0,0 @@
|
|||||||
from openai import OpenAI
|
|
||||||
import streamlit as st
|
|
||||||
from streamlit_feedback import streamlit_feedback
|
|
||||||
import trubrics
|
|
||||||
|
|
||||||
with st.sidebar:
|
|
||||||
openai_api_key = st.text_input("OpenAI API Key", key="feedback_api_key", type="password")
|
|
||||||
"[Get an OpenAI API key](https://platform.openai.com/account/api-keys)"
|
|
||||||
"[View the source code](https://github.com/streamlit/llm-examples/blob/main/pages/5_Chat_with_user_feedback.py)"
|
|
||||||
"[](https://codespaces.new/streamlit/llm-examples?quickstart=1)"
|
|
||||||
|
|
||||||
st.title("📝 Chat with feedback (Trubrics)")
|
|
||||||
|
|
||||||
"""
|
|
||||||
In this example, we're using [streamlit-feedback](https://github.com/trubrics/streamlit-feedback) and Trubrics to collect and store feedback
|
|
||||||
from the user about the LLM responses.
|
|
||||||
"""
|
|
||||||
|
|
||||||
if "messages" not in st.session_state:
|
|
||||||
st.session_state.messages = [
|
|
||||||
{"role": "assistant", "content": "How can I help you? Leave feedback to help me improve!"}
|
|
||||||
]
|
|
||||||
if "response" not in st.session_state:
|
|
||||||
st.session_state["response"] = None
|
|
||||||
|
|
||||||
messages = st.session_state.messages
|
|
||||||
for msg in messages:
|
|
||||||
st.chat_message(msg["role"]).write(msg["content"])
|
|
||||||
|
|
||||||
if prompt := st.chat_input(placeholder="Tell me a joke about sharks"):
|
|
||||||
messages.append({"role": "user", "content": prompt})
|
|
||||||
st.chat_message("user").write(prompt)
|
|
||||||
|
|
||||||
if not openai_api_key:
|
|
||||||
st.info("Please add your OpenAI API key to continue.")
|
|
||||||
st.stop()
|
|
||||||
client = OpenAI(api_key=openai_api_key)
|
|
||||||
response = client.chat.completions.create(model="gpt-3.5-turbo", messages=messages)
|
|
||||||
st.session_state["response"] = response.choices[0].message.content
|
|
||||||
with st.chat_message("assistant"):
|
|
||||||
messages.append({"role": "assistant", "content": st.session_state["response"]})
|
|
||||||
st.write(st.session_state["response"])
|
|
||||||
|
|
||||||
if st.session_state["response"]:
|
|
||||||
feedback = streamlit_feedback(
|
|
||||||
feedback_type="thumbs",
|
|
||||||
optional_text_label="[Optional] Please provide an explanation",
|
|
||||||
key=f"feedback_{len(messages)}",
|
|
||||||
)
|
|
||||||
# This app is logging feedback to Trubrics backend, but you can send it anywhere.
|
|
||||||
# The return value of streamlit_feedback() is just a dict.
|
|
||||||
# Configure your own account at https://trubrics.streamlit.app/
|
|
||||||
if feedback and "TRUBRICS_EMAIL" in st.secrets:
|
|
||||||
config = trubrics.init(
|
|
||||||
email=st.secrets.TRUBRICS_EMAIL,
|
|
||||||
password=st.secrets.TRUBRICS_PASSWORD,
|
|
||||||
)
|
|
||||||
collection = trubrics.collect(
|
|
||||||
component_name="default",
|
|
||||||
model="gpt",
|
|
||||||
response=feedback,
|
|
||||||
metadata={"chat": messages},
|
|
||||||
)
|
|
||||||
trubrics.save(config, collection)
|
|
||||||
st.toast("Feedback recorded!", icon="📝")
|
|
||||||
@ -11,4 +11,4 @@ python-decouple
|
|||||||
langchain_google_genai
|
langchain_google_genai
|
||||||
langchain-deepseek
|
langchain-deepseek
|
||||||
sentence_transformers
|
sentence_transformers
|
||||||
mlflow
|
watchdog
|
||||||
Loading…
x
Reference in New Issue
Block a user