mirror of
https://github.com/aimingmed/aimingmed-ai.git
synced 2026-02-03 13:49:35 +08:00
49 lines
2.2 KiB
Python
49 lines
2.2 KiB
Python
import streamlit as st
|
|
|
|
from langchain.agents import initialize_agent, AgentType
|
|
from langchain.callbacks import StreamlitCallbackHandler
|
|
from langchain.chat_models import ChatOpenAI
|
|
from langchain.tools import DuckDuckGoSearchRun
|
|
|
|
with st.sidebar:
|
|
openai_api_key = st.text_input(
|
|
"OpenAI API Key", key="langchain_search_api_key_openai", type="password"
|
|
)
|
|
"[Get an OpenAI API key](https://platform.openai.com/account/api-keys)"
|
|
"[View the source code](https://github.com/streamlit/llm-examples/blob/main/pages/2_Chat_with_search.py)"
|
|
"[](https://codespaces.new/streamlit/llm-examples?quickstart=1)"
|
|
|
|
st.title("🔎 LangChain - Chat with search")
|
|
|
|
"""
|
|
In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app.
|
|
Try more LangChain 🤝 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent).
|
|
"""
|
|
|
|
if "messages" not in st.session_state:
|
|
st.session_state["messages"] = [
|
|
{"role": "assistant", "content": "Hi, I'm a chatbot who can search the web. How can I help you?"}
|
|
]
|
|
|
|
for msg in st.session_state.messages:
|
|
st.chat_message(msg["role"]).write(msg["content"])
|
|
|
|
if prompt := st.chat_input(placeholder="Who won the Women's U.S. Open in 2018?"):
|
|
st.session_state.messages.append({"role": "user", "content": prompt})
|
|
st.chat_message("user").write(prompt)
|
|
|
|
if not openai_api_key:
|
|
st.info("Please add your OpenAI API key to continue.")
|
|
st.stop()
|
|
|
|
llm = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=openai_api_key, streaming=True)
|
|
search = DuckDuckGoSearchRun(name="Search")
|
|
search_agent = initialize_agent(
|
|
[search], llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True
|
|
)
|
|
with st.chat_message("assistant"):
|
|
st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False)
|
|
response = search_agent.run(st.session_state.messages, callbacks=[st_cb])
|
|
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
st.write(response)
|