mirror of
https://github.com/RYDE-WORK/MiniCPM.git
synced 2026-01-19 21:03:39 +08:00
58 lines
2.3 KiB
Python
58 lines
2.3 KiB
Python
"""
|
||
the script will use bitandbytes to quantize the MiniCPM language model.
|
||
the be quantized model can be finetuned by MiniCPM or not.
|
||
you only need to set the model_path 、save_path and run bash code
|
||
|
||
cd MiniCPM
|
||
python quantize/bnb_quantize.py
|
||
|
||
you will get the quantized model in save_path、quantized_model test time and gpu usage
|
||
"""
|
||
|
||
|
||
import torch
|
||
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||
import time
|
||
import torch
|
||
import GPUtil
|
||
import os
|
||
|
||
model_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16" # 模型下载地址
|
||
save_path = "/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16_int4" # 量化模型保存地址
|
||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||
|
||
# 创建一个配置对象来指定量化参数
|
||
quantization_config = BitsAndBytesConfig(
|
||
load_in_4bit=True, # 是否进行4bit量化
|
||
load_in_8bit=False, # 是否进行8bit量化
|
||
bnb_4bit_compute_dtype=torch.float16, # 计算精度设置
|
||
bnb_4bit_quant_storage=torch.uint8, # 量化权重的储存格式
|
||
bnb_4bit_quant_type="nf4", # 量化格式,这里用的是正太分布的int4
|
||
bnb_4bit_use_double_quant=True, # 是否采用双量化,即对zeropoint和scaling参数进行量化
|
||
llm_int8_enable_fp32_cpu_offload=False, # 是否llm使用int8,cpu上保存的参数使用fp32
|
||
llm_int8_has_fp16_weight=False, # 是否启用混合精度
|
||
#llm_int8_skip_modules=["out_proj", "kv_proj", "lm_head"], # 不进行量化的模块
|
||
llm_int8_threshold=6.0, # llm.int8()算法中的离群值,根据这个值区分是否进行量化
|
||
)
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||
model = AutoModelForCausalLM.from_pretrained(
|
||
model_path,
|
||
device_map=device, # 分配模型到device
|
||
quantization_config=quantization_config,
|
||
trust_remote_code=True,
|
||
)
|
||
|
||
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
|
||
start = time.time()
|
||
response = model.chat(tokenizer, "<用户>给我讲一个故事<AI>",history=[], temperature=0.5, top_p=0.8, repetition_penalty=1.02) # 模型推理
|
||
print("量化后输出", response)
|
||
print("量化后推理用时", time.time() - start)
|
||
print(f"量化后显存占用: {round(gpu_usage/1024,2)}GB")
|
||
|
||
|
||
# 保存模型和分词器
|
||
os.makedirs(save_path, exist_ok=True)
|
||
model.save_pretrained(save_path, safe_serialization=True)
|
||
tokenizer.save_pretrained(save_path)
|