9.2 KiB
MiniCPM
Hugging Face | ModelScope | Hugging Face | Technical Report
Quick Links
- Introduction
- Downloading
- Benchmark
- Deployment on mobile phones
- Demo & API
- Parameter-efficient Fine-tuning
- LICENSE
- Citation
- Show Cases
Introduction
Downloading
Benchmark
| HuggingFace | ModelScope | WiseModel |
|---|---|---|
| sft-bf16 | sft-bf16 | sft-bf16 |
| sft-fp32 | sft-fp32 | sft-fp32 |
| dpo-bf16 | dpo-bf16 | dpo-bf16 |
| dpo-fp16 | dpo-fp16 | dpo-fp16 |
| dpo-fp32 | dpo-fp32 | dpo-fp32 |
Multi-modal
| Models | MME(P) | MMB-dev(en) | MMB-dev(zh) | MMMU-val | CMMMU-val |
|---|---|---|---|---|---|
| LLaVA-Phi | 1335.1 | 59.8 | / | / | / |
| MobileVLM | 1288.9 | 59.6 | / | / | / |
| Imp-v1 | 1434.0 | 66.5 | / | / | / |
| Qwen-VL-Chat | 1487 | 60.6 | 56.7 | 35.9 | 30.7 |
| MiniCPM-V | 1446 | 67.3 | 61.9 | 34.7 | 32.1 |
DPO
| Models | MT-bench |
|---|---|
| GPT-4-turbo | 9.32 |
| GPT-3.5-turbo | 8.39 |
| Mistral-8*7b-Instruct-v0.1 | 8.30 |
| Claude-2.1 | 8.18 |
| Zephyr-7B-beta | 7.34 |
| MiniCPM-2B | 7.25 |
| Vicuna-33B | 7.12 |
| Zephyr-7B-alpha | 6.88 |
| LLaMA-2-70B-chat | 6.86 |
| Mistral-7B-Instruct-v0.1 | 6.84 |
| LLaMA-2-13B-chat | 6.65 |
| Vicuna-13B | 6.57 |
| MPT-34B-instruct | 6.39 |
| LLaMA-2-7B-chat | 6.27 |
| Vicuna-7B | 6.17 |
| MPT-7B-chat | 5.42 |
Deployment on mobile phones
After INT4 quantization, MiniCPM only occupies 2GB of space, meeting the requirements of inference on edge devices.
We utilize the open-source framework MLC-LLM for deployment on Android and Harmony OS. For deployment on IOS, we adapt MiniCPM using LLMFarm. We select some mobile phones for testing respectively.
Tutorial
Android
Compilation and installation on Android
IOS
Compilation and installation on IOS
Multimodal
Performance
Instead of conducting in-depth optimization for deployment on mobile phones, we only verify the feasibility of MiniCPM using mobile chips for inference.
We welcome more developers to continuously improve the inference performance of LLMs on mobile phones and update the test results below.
| Mobile Phones | OS | Processor | Memory(GB) | Inference Throughput(token/s) |
|---|---|---|---|---|
| OPPO Find N3 | Android 13 | snapdragon 8 Gen2 | 12 | 6.5 |
| Samsung S23 Ultra | Android 14 | snapdragon 8 Gen2 | 12 | 6.4 |
| Meizu M182Q | Android 11 | snapdragon 888Plus | 8 | 3.7 |
| Xiaomi 12 Pro | Android 13 | snapdragon 8 Gen1 | 8+3 | 3.7 |
| Xiaomi Redmi K40 | Android 11 | snapdragon 870 | 8 | 3.5 |
| Oneplus LE 2100 | Android 13 | snapdragon 870 | 12 | 3.5 |
| Oneplus HD1900 | Android 11 | snapdragon 865 | 8 | 3.2 |
| Oneplus HD1900 | Android 11 | snapdragon 855 | 8 | 3.0 |
| Oneplus HD1905 | Android 10 | snapdragon 855 | 8 | 3.0 |
| Oneplus HD1900 | Android 11 | snapdragon 855 | 8 | 3.0 |
| Xiaomi MI 8 | Android 9 | snapdragon 845 | 6 | 2.3 |
| Huawei Nova 11SE | Harmony 4.0.0 | snapdragon 778 | 12 | 1.9 |
| Xiaomi MIX 2 | Android 9 | snapdragon 835 | 6 | 1.3 |
| iPhone 15 Pro | iOS 17.2.1 | A16 | 8 | 18.0 |
| iPhone 15 | iOS 17.2.1 | A16 | 6 | 15.0 |
| iPhone 12 Pro | iOS 16.5.1 | A14 | 6 | 5.8 |
| iPhone 12 | iOS 17.2.1 | A14 | 4 | 5.8 |
| iPhone 11 | iOS 16.6 | A13 | 4 | 4.6 |
Demo & API
Web-demo based on Gradio
Launch gradio-based demo using the following command:
python demo/gradio_based_demo.py
Inference with vLLM (Recommended!)
- Install vLLM supporting MiniCPM
- vLLM 0.2.2 is adapted to MiniCPM in
inference/vllm. More vLLM versions will be supported in the future
- vLLM 0.2.2 is adapted to MiniCPM in
pip install inference/vllm
- Transfer Huggingface Transformers repo to vLLM-MiniCPM repo, where
<hf_repo_path>,<vllmcpm_repo_path>are local paths.
python inference/convert_hf_to_vllmcpm.py --load <hf_repo_path> --save <vllmcpm_repo_path>
- Examples
cd inference/vllm/examples/infer_cpm
python inference.py --model_path <vllmcpm_repo_path> --prompt_path prompts/prompt_final.txt
##
## LICENSE
#### Model LICENSE
<!-- 本仓库中代码依照 [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) 协议开源,MiniCPM 模型权重的使用则需要遵循 [“通用模型许可协议-来源说明-宣传限制-商业授权”](https://github.com/OpenBMB/General-Model-License/blob/main/%E9%80%9A%E7%94%A8%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE-%E6%9D%A5%E6%BA%90%E8%AF%B4%E6%98%8E-%E5%AE%A3%E4%BC%A0%E9%99%90%E5%88%B6-%E5%95%86%E4%B8%9A%E6%8E%88%E6%9D%83.md)。
MiniCPM 模型权重对学术研究完全开放。如需将模型用于商业用途,请联系cpm@modelbest.cn来获取书面授权,在登记后亦允许免费商业使用。 -->
This repository is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License. The usage of MiniCPM's models and weights must strictly follow [“通用模型许可协议-来源说明-宣传限制-商业授权”](https://github.com/OpenBMB/General-Model-License/blob/main/%E9%80%9A%E7%94%A8%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE-%E6%9D%A5%E6%BA%90%E8%AF%B4%E6%98%8E-%E5%AE%A3%E4%BC%A0%E9%99%90%E5%88%B6-%E5%95%86%E4%B8%9A%E6%8E%88%E6%9D%83.md).
The models and weights of MiniCPM are completely free for academic research. If you need to use MiniCPM for commercial purposes, feel free to contact cpm@modelbest.cn for obtaining written authorization. After registration, free commercial usage is also allowed.
#### Disclaimer
<!-- 作为一个语言模型,MiniCPM 通过学习大量的文本来生成内容,但它无法理解、表达个人观点或价值判断,它所输出的任何内容都不代表模型开发者的观点和立场。
因此用户在使用 MiniCPM 生成的内容时,应自行负责对其进行评估和验证。 -->
As a language model, MiniCPM generates contents by learning from huge amount of internet corpus. It doesn't have personal opinions or value judgments. All the generated content of MiniCPM doesn't represent views or standpoints of model developers.
Users are responsible for the evaluation and verification of all generated contents.
## Citation
Please cite our [techinical report]() if you find our work valuable.
@inproceedings{han2022bminf, title={MiniCPM: todo}, booktitle={OpenBMB Blog}, year={2024} }
## Show Cases
#### Code
Case 1:

Case 2:

#### Reasoning
Case 1:

Case 2:

#### World-Knowledge
Case 1:

#### Content Creation
Case 1:

#### Translation
Case 1:

Case 2:

#### Instruction Following
Case 1:

Case 2:

#### Special characters
Case 1:

Case 2:
