mirror of
https://github.com/RYDE-WORK/MiniCPM.git
synced 2026-01-19 12:53:36 +08:00
Update README-en.md
This commit is contained in:
parent
2e5b9d95c6
commit
77e57b4f52
80
README-en.md
80
README-en.md
@ -144,54 +144,50 @@ The capital city of China is Beijing. Beijing is not only the political center o
|
||||
|
||||
## Deployment on mobile phones
|
||||
|
||||
<!-- 进行Int4量化后,MiniCPM只占2GB空间,具备在端侧手机进行模型部署的条件。
|
||||
对此,我们针对Android和Harmony系统使用开源框架MLC-LLM进行模型适配,针对iPhone系统使用开源框架LLMFarm进行模型适配,并分别选取了部分端侧手机设备进行了测试。 -->
|
||||
After INT4 quantization, MiniCPM only occupies 2GB of space, meeting the requirements of inference on edge devices.
|
||||
#### Tutorial
|
||||
|
||||
We utilize the open-source framework [MLC-LLM](https://github.com/mlc-ai/mlc-llm) for deployment on Android and Harmony OS. For deployment on IOS, we adapt MiniCPM using [LLMFarm](https://github.com/guinmoon/LLMFarm). We select some mobile phones for testing respectively.
|
||||
|
||||
### Tutorial
|
||||
|
||||
#### Android
|
||||
<!-- android编译安装MiniCPM指南 [EN](https://github.com/OpenBMB/mlc-MiniCPM/blob/main/README.md) -->
|
||||
[Compilation and installation on Android](https://github.com/OpenBMB/mlc-MiniCPM/blob/main/README.md)
|
||||
|
||||
#### IOS
|
||||
<!-- [ios编译安装MiniCPM指南](https://github.com/OpenBMB/LLMFarm) -->
|
||||
[Compilation and installation on IOS](https://github.com/OpenBMB/LLMFarm)
|
||||
|
||||
#### Multimodal
|
||||
* After INT4 quantization, MiniCPM only occupies 2GB of space, meeting the requirements of inference on end devices.
|
||||
* We have made different adaptations for different operating systems.
|
||||
* **Note: The current open-source framework is still improving its support for mobile phones, and not all chips and operating system versions can successfully run MLC-LLM or LLMFarm.**
|
||||
* Android, Harmony OS
|
||||
* Adapt based on [MLC-LLM](https://github.com/mlc-ai/mlc-llm).
|
||||
* Adapted for text model MiniCPM, and multimodel model MiniCPM-V.
|
||||
* Support MiniCPM-2B-SFT-INT4、MiniCPM-2B-DPO-INT4、MiniCPM-V.
|
||||
* [Compile and Installation Guide](https://github.com/OpenBMB/mlc-MiniCPM/blob/main/README.md)
|
||||
* iOS
|
||||
* Adapt based on [LLMFarm](https://github.com/guinmoon/LLMFarm).
|
||||
* Adapted for text model MiniCPM.
|
||||
* Support MiniCPM-2B-SFT-INT4、MiniCPM-2B-DPO-INT4.
|
||||
* [Compile and Installation Guide](https://github.com/OpenBMB/LLMFarm)
|
||||
|
||||
### Performance
|
||||
|
||||
<!-- 我们并为针对手机部署进行深度优化,仅验证MiniCPM使用手机芯片进行推理的可行性。
|
||||
**我们也欢迎更多开发者进一步调优并更新下面的测试列表,不断提升端侧大模型在手机上的推理性能。** -->
|
||||
Instead of conducting in-depth optimization for deployment on mobile phones, we only verify the feasibility of MiniCPM using mobile chips for inference.
|
||||
* We did not conduct in-depth optimization and system testing on the mobile inference model, only verifying the feasibility of MiniCPM using mobile phone chips for inference.
|
||||
* There have been no previous attempts to deploy multimodal models on mobile phones. We have verified the feasibility of deploying MiniCPM-V on mobile phones based on MLC-LLM this time, and it can input and output normally. However, there also exist a problem of long image processing time, which needs further optimization :)
|
||||
* **We welcome more developers to continuously improve the inference performance of LLMs on mobile phones and update the test results below.**
|
||||
|
||||
**We welcome more developers to continuously improve the inference performance of LLMs on mobile phones and update the test results below.**
|
||||
| Mobile Phones | OS | Processor | Memory(GB) | Inference Throughput(token/s) |
|
||||
| ----------------- | ------------- | ------------------ | ------------ | ------------------------------- |
|
||||
| OPPO Find N3 | Android 13 | snapdragon 8 Gen2 | 12 | 6.5 |
|
||||
| Samsung S23 Ultra | Android 14 | snapdragon 8 Gen2 | 12 | 6.4 |
|
||||
| Meizu M182Q | Android 11 | snapdragon 888Plus | 8 | 3.7 |
|
||||
| Xiaomi 12 Pro | Android 13 | snapdragon 8 Gen1 | 8+3 | 3.7 |
|
||||
| Xiaomi Redmi K40 | Android 11 | snapdragon 870 | 8 | 3.5 |
|
||||
| Oneplus LE 2100 | Android 13 | snapdragon 870 | 12 | 3.5 |
|
||||
| Oneplus HD1900 | Android 11 | snapdragon 865 | 8 | 3.2 |
|
||||
| Oneplus HD1900 | Android 11 | snapdragon 855 | 8 | 3.0 |
|
||||
| Oneplus HD1905 | Android 10 | snapdragon 855 | 8 | 3.0 |
|
||||
| Oneplus HD1900 | Android 11 | snapdragon 855 | 8 | 3.0 |
|
||||
| Xiaomi MI 8 | Android 9 | snapdragon 845 | 6 | 2.3 |
|
||||
| Huawei Nova 11SE | Harmony 4.0.0 | snapdragon 778 | 12 | 1.9 |
|
||||
| Xiaomi MIX 2 | Android 9 | snapdragon 835 | 6 | 1.3 |
|
||||
| iPhone 15 Pro | iOS 17.2.1 | A16 | 8 | 18.0 |
|
||||
| iPhone 15 | iOS 17.2.1 | A16 | 6 | 15.0 |
|
||||
| iPhone 12 Pro | iOS 16.5.1 | A14 | 6 | 5.8 |
|
||||
| iPhone 12 | iOS 17.2.1 | A14 | 4 | 5.8 |
|
||||
| iPhone 11 | iOS 16.6 | A13 | 4 | 4.6 |
|
||||
|
||||
|Mobile Phones|OS|Processor|Memory(GB)|Inference Throughput(token/s)|
|
||||
|-|-|-|-|-|
|
||||
|OPPO Find N3|Android 13|snapdragon 8 Gen2|12|6.5|
|
||||
|Samsung S23 Ultra|Android 14|snapdragon 8 Gen2|12|6.4|
|
||||
|Meizu M182Q|Android 11|snapdragon 888Plus|8|3.7|
|
||||
|Xiaomi 12 Pro|Android 13|snapdragon 8 Gen1|8+3|3.7|
|
||||
|Xiaomi Redmi K40|Android 11|snapdragon 870|8|3.5|
|
||||
|Oneplus LE 2100|Android 13|snapdragon 870|12|3.5|
|
||||
|Oneplus HD1900|Android 11|snapdragon 865|8|3.2|
|
||||
|Oneplus HD1900|Android 11|snapdragon 855|8|3.0|
|
||||
|Oneplus HD1905|Android 10|snapdragon 855|8|3.0|
|
||||
|Oneplus HD1900|Android 11|snapdragon 855|8|3.0|
|
||||
|Xiaomi MI 8|Android 9|snapdragon 845|6|2.3|
|
||||
|Huawei Nova 11SE|Harmony 4.0.0|snapdragon 778|12|1.9|
|
||||
|Xiaomi MIX 2|Android 9|snapdragon 835|6|1.3|
|
||||
|iPhone 15 Pro|iOS 17.2.1|A16|8|18.0|
|
||||
|iPhone 15|iOS 17.2.1|A16|6|15.0|
|
||||
|iPhone 12 Pro|iOS 16.5.1|A14|6|5.8|
|
||||
|iPhone 12|iOS 17.2.1|A14|4|5.8|
|
||||
|iPhone 11|iOS 16.6|A13|4|4.6|
|
||||
|
||||

|
||||

|
||||
|
||||
## Demo & API
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user