修改了awq的量化readme

This commit is contained in:
刘丹 2024-06-27 09:39:33 +08:00
parent d58e892a98
commit 3cab27b460

View File

@ -296,14 +296,30 @@ print(model.response("<用户>山东省最高的山是哪座山, 它比黄山高
<p id="awq"></p> <p id="awq"></p>
**awq量化** **awq量化**
1. 在quantize/awq_quantize.py 文件中修改根据注释修改配置参数model_path , quant_path, quant_data_path , quant_config, quant_samples, 如需自定数据集则需要修改 custom_data。 1. 在quantize/awq_quantize.py 文件中修改根据注释修改配置参数:
2. 在quantize/quantize_data文件下已经提供了alpaca和wiki_text两个数据集作为量化校准集如果需要自定义数据集修改quantize/awq_quantize.py中的custom_data变量 ```python
``` model_path = '/root/ld/ld_model_pretrained/MiniCPM-1B-sft-bf16' # model_path or model_id
quant_path = '/root/ld/ld_project/pull_request/MiniCPM/quantize/awq_cpm_1b_4bit' # quant_save_path
quant_data_path='/root/ld/ld_project/pull_request/MiniCPM/quantize/quantize_data/wikitext'# 写入自带量化数据集data下的alpaca或者wikitext
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" } # "w_bit":4 or 8
quant_samples=512 # how many samples to use for calibration
custom_data=[{'question':'你叫什么名字。','answer':'我是openmbmb开源的小钢炮minicpm。'}, # 自定义数据集可用
{'question':'你有什么特色。','answer':'我很小,但是我很强。'}]
```
2. 在quantize/quantize_data文件下已经提供了alpaca和wiki_text两个数据集作为量化校准集修改上述quant_data_path为其中一个文件夹的路径
3. 如果需要自定义数据集修改quantize/awq_quantize.py中的custom_data变量
```python
custom_data=[{'question':'过敏性鼻炎有什么症状?','answer':'过敏性鼻炎可能鼻塞,流鼻涕,头痛等症状反复发作,严重时建议及时就医。'}, custom_data=[{'question':'过敏性鼻炎有什么症状?','answer':'过敏性鼻炎可能鼻塞,流鼻涕,头痛等症状反复发作,严重时建议及时就医。'},
{'question':'1+1等于多少','answer':'等于2'}] {'question':'1+1等于多少','answer':'等于2'}]
``` ```
3. 运行quantize/awq_quantize.py文件,在设置的quan_path目录下可得awq量化后的模型。 4. 根据选择的数据集修改quantize/awq_quantize.py 第三十八行:
```python
model.quantize(tokenizer, quant_config=quant_config, calib_data=load_wikitext(quant_data_path=quant_data_path))#使用wikitext进行量化
model.quantize(tokenizer, quant_config=quant_config, calib_data=load_alpaca(quant_data_path=quant_data_path))#使用alpaca进行量化
model.quantize(tokenizer, quant_config=quant_config, calib_data=load_cust_data(quant_data_path=quant_data_path))#使用自定义数据集进行量化
```
5. 运行quantize/awq_quantize.py文件,在设置的quan_path目录下可得awq量化后的模型。
<p id="quantize_test"></p> <p id="quantize_test"></p>
**量化测试** **量化测试**