mirror of
https://github.com/RYDE-WORK/MiniCPM.git
synced 2026-01-24 15:33:15 +08:00
增加了llama_facoty的微调示例
This commit is contained in:
parent
c3206bad3f
commit
d58e892a98
73
finetune/llama_factory_example/README.md
Normal file
73
finetune/llama_factory_example/README.md
Normal file
@ -0,0 +1,73 @@
|
||||
# MiniCPM_llama_factory 微调
|
||||
MiniCPM已经支持llama_factory微调,llama_factory支持continue_pretrain,sft,ppo,dpo,kto,orpo等等微调方式。
|
||||
由于llama_factory功能强大,但初学者较难上手,我们录制了微调教程
|
||||
**我们提供了 llama_factory_example文件夹,用来微调minicpm1b,minicpm2b模型。**
|
||||
1.首先安装llama_factory依赖。
|
||||
```bash
|
||||
git clone https://github.com/hiyouga/LLaMA-Factory
|
||||
cd LLaMA-Factory
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
2.将数据集处理成Minicpm/finetune/llama_factory_example/llama_factory_data文件夹中的格式,示例包括dpo,kto,sft三种微调方式并放置到llama_factory/data目录下.
|
||||
3.在llama_factory/data/dataset_info.json中添加数据集信息,保证dataset_info.json中能找到你的数据集,如下例:
|
||||
``` json
|
||||
{"identity": {
|
||||
"file_name": "identity.json"
|
||||
},
|
||||
"alpaca_zh_demo": {
|
||||
"file_name": "alpaca_zh_demo.json"
|
||||
},
|
||||
"kto_en_demo": {
|
||||
"file_name": "kto_en_demo.json",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "messages",
|
||||
"kto_tag": "label"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "role",
|
||||
"content_tag": "content",
|
||||
"user_tag": "user",
|
||||
"assistant_tag": "assistant"
|
||||
}
|
||||
},
|
||||
"dpo_en_demo": {
|
||||
"file_name": "dpo_en_demo.json",
|
||||
"ranking": true,
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "conversations",
|
||||
"chosen": "chosen",
|
||||
"rejected": "rejected"
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
4.将MiniCPM/finetune/llama_factory_example中文件复制到LLaMA-Factory/examples目录下。
|
||||
5.以dpo为例,首先修改minicpm_dpo.yaml,需要修改的:
|
||||
```bash
|
||||
model_name_or_path: openbmb/MiniCPM-2B-sft-bf16 #或者你本地保存的地址
|
||||
dataset: dpo_en_demo #这里写dataset_info.json中的键名
|
||||
output_dir: your/finetune_minicpm/save/path
|
||||
bf16: true #如果你的设备支持bf16,否则false
|
||||
deepspeed: examples/deepspeed/ds_z2_config.json #如果显存不够可以改成ds_z3_config.json
|
||||
```
|
||||
6.修改single_node.sh文件中:
|
||||
1.如果是a100以及更高端服务器,删除以下两行
|
||||
```bash
|
||||
export NCCL_P2P_DISABLE=1
|
||||
export NCCL_IB_DISABLE=1
|
||||
```
|
||||
2.设置你希望参与微调的卡,以下示例为第1张到第8张卡都参与微调
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
|
||||
```
|
||||
3.将以下代码src/train.py空格后方参数改为llama_facoty中minicpm_dpo.yaml的绝对路径
|
||||
```bash
|
||||
src/train.py /root/ld/ld_project/LLaMA-Factory/examples/minicpm/minicpm_sft.yaml
|
||||
```
|
||||
7.执行:
|
||||
```bash
|
||||
cd LLaMA-Factory
|
||||
bash single_node.sh
|
||||
```
|
||||
7226
finetune/llama_factory_example/llama_factory_data/dpo_en_demo.json
Normal file
7226
finetune/llama_factory_example/llama_factory_data/dpo_en_demo.json
Normal file
File diff suppressed because one or more lines are too long
5398
finetune/llama_factory_example/llama_factory_data/kto_en_demo.json
Normal file
5398
finetune/llama_factory_example/llama_factory_data/kto_en_demo.json
Normal file
File diff suppressed because one or more lines are too long
5002
finetune/llama_factory_example/llama_factory_data/sft_zh_demo.json
Normal file
5002
finetune/llama_factory_example/llama_factory_data/sft_zh_demo.json
Normal file
File diff suppressed because it is too large
Load Diff
42
finetune/llama_factory_example/minicpm_dpo.yaml
Normal file
42
finetune/llama_factory_example/minicpm_dpo.yaml
Normal file
@ -0,0 +1,42 @@
|
||||
### model
|
||||
model_name_or_path: /root/ld/ld_project/LLaMA-Factory/saves/minicpm/full/sft/
|
||||
|
||||
### method
|
||||
stage: dpo
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
|
||||
### ddp
|
||||
ddp_timeout: 180000000
|
||||
deepspeed: examples/deepspeed/ds_z2_config.json
|
||||
|
||||
### dataset
|
||||
dataset: dpo_en_demo
|
||||
template: cpm
|
||||
cutoff_len: 1200
|
||||
max_samples: 50000000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
|
||||
### output
|
||||
output_dir: saves/minicpm/dpo
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
save_strategy: epoch
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 4
|
||||
learning_rate: 0.00001
|
||||
num_train_epochs: 2.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
bf16: true
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 4
|
||||
evaluation_strategy: steps
|
||||
eval_steps: 500
|
||||
42
finetune/llama_factory_example/minicpm_kto.yaml
Normal file
42
finetune/llama_factory_example/minicpm_kto.yaml
Normal file
@ -0,0 +1,42 @@
|
||||
### model
|
||||
model_name_or_path: /root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16/
|
||||
|
||||
### method
|
||||
stage: kto
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
kto_ftx: 0.1
|
||||
|
||||
### ddp
|
||||
ddp_timeout: 180000000
|
||||
deepspeed: examples/deepspeed/ds_z2_config.json
|
||||
|
||||
### dataset
|
||||
dataset: kto_harmless
|
||||
template: cpm
|
||||
cutoff_len: 1200
|
||||
max_samples: 500000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: saves/minicpm/kto
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 4
|
||||
gradient_accumulation_steps: 4
|
||||
learning_rate: 0.000005
|
||||
num_train_epochs: 1.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
bf16: true
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 16
|
||||
evaluation_strategy: steps
|
||||
eval_steps: 500
|
||||
41
finetune/llama_factory_example/minicpm_sft.yaml
Normal file
41
finetune/llama_factory_example/minicpm_sft.yaml
Normal file
@ -0,0 +1,41 @@
|
||||
### model
|
||||
model_name_or_path: /root/ld/ld_model_pretrained/miniCPM-bf16/
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
|
||||
### ddp
|
||||
ddp_timeout: 180000000
|
||||
deepspeed: examples/deepspeed/ds_z2_config.json
|
||||
|
||||
### dataset
|
||||
dataset: glaive_toolcall_en,glaive_toolcall_zh
|
||||
template: cpm
|
||||
cutoff_len: 1800
|
||||
max_samples: 500000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: saves/minicpm/fuction_call
|
||||
logging_steps: 10
|
||||
save_strategy: epoch
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 4
|
||||
learning_rate: 0.0001
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
bf16: true
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 4
|
||||
evaluation_strategy: steps
|
||||
eval_steps: 500
|
||||
16
finetune/llama_factory_example/single_node.sh
Normal file
16
finetune/llama_factory_example/single_node.sh
Normal file
@ -0,0 +1,16 @@
|
||||
#!/bin/bash
|
||||
|
||||
NPROC_PER_NODE=8
|
||||
NNODES=1
|
||||
RANK=0
|
||||
MASTER_ADDR=127.0.0.1
|
||||
MASTER_PORT=29500
|
||||
export NCCL_P2P_DISABLE=1
|
||||
export NCCL_IB_DISABLE=1
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 torchrun \
|
||||
--nproc_per_node $NPROC_PER_NODE \
|
||||
--nnodes $NNODES \
|
||||
--node_rank $RANK \
|
||||
--master_addr $MASTER_ADDR \
|
||||
--master_port $MASTER_PORT \
|
||||
src/train.py /root/ld/ld_project/LLaMA-Factory/examples/minicpm/minicpm_sft.yaml
|
||||
Loading…
x
Reference in New Issue
Block a user