* publish 0.2.10 (#2797) 新功能: - 优化 PDF 文件的 OCR,过滤无意义的小图片 by @liunux4odoo #2525 - 支持 Gemini 在线模型 by @yhfgyyf #2630 - 支持 GLM4 在线模型 by @zRzRzRzRzRzRzR - elasticsearch更新https连接 by @xldistance #2390 - 增强对PPT、DOC知识库文件的OCR识别 by @596192804 #2013 - 更新 Agent 对话功能 by @zRzRzRzRzRzRzR - 每次创建对象时从连接池获取连接,避免每次执行方法时都新建连接 by @Lijia0 #2480 - 实现 ChatOpenAI 判断token有没有超过模型的context上下文长度 by @glide-the - 更新运行数据库报错和项目里程碑 by @zRzRzRzRzRzRzR #2659 - 更新配置文件/文档/依赖 by @imClumsyPanda @zRzRzRzRzRzRzR - 添加日文版 readme by @eltociear #2787 修复: - langchain 更新后,PGVector 向量库连接错误 by @HALIndex #2591 - Minimax's model worker 错误 by @xyhshen - ES库无法向量检索.添加mappings创建向量索引 by MSZheng20 #2688 * Update README.md * Add files via upload * Update README.md * 修复PDF旋转的BUG * Support Chroma * perf delete unused import * 忽略测试代码 * 更新文件 * API前端丢失问题解决 * 更新了chromadb的打印的符号 * autodl代号错误 * Update README.md * Update README.md * Update README.md * 修复milvus相关bug * 支持星火3.5模型 * 修复es 知识库查询bug (#2848) * 修复es 知识库查询bug (#2848) * 更新zhipuai请求方式 * 增加对 .htm 扩展名的显式支持 * 更新readme * Docker镜像制作与K8S YAML部署操作说明 (#2892) * Dev (#2280) * 修复Azure 不设置Max token的bug * 重写agent 1. 修改Agent实现方式,支持多参数,仅剩 ChatGLM3-6b和 OpenAI GPT4 支持,剩余模型将在暂时缺席Agent功能 2. 删除agent_chat 集成到llm_chat中 3. 重写大部分工具,适应新Agent * 更新架构 * 删除web_chat,自动融合 * 移除所有聊天,都变成Agent控制 * 更新配置文件 * 更新配置模板和提示词 * 更改参数选择bug * 修复模型选择的bug * 更新一些内容 * 更新多模态 语音 视觉的内容 1. 更新本地模型语音 视觉多模态功能并设置了对应工具 * 支持多模态Grounding 1. 美化了chat的代码 2. 支持视觉工具输出Grounding任务 3. 完善工具调用的流程 * 支持XPU,修改了glm3部分agent * 添加 qwen agent * 对其ChatGLM3-6B与Qwen-14B * fix callback handler * 更新Agent工具返回 * fix: LLMChain no output when no tools selected * 跟新了langchain 0.1.x需要的依赖和修改的代码 * 更新chatGLM3 langchain0.1.x Agent写法 * 按照 langchain 0.1 重写 qwen agent * 修复 callback 无效的问题 * 添加文生图工具 * webui 支持文生图 * 集成openai plugins插件 * 删除fastchat的配置 * 增加openai插件 * 集成openai plugins插件 * 更新模型执行列表和今晚修改的内容 * 集成openai_plugins/imitater插件 * 集成openai_plugins/imitater插件 * 集成openai_plugins/imitater插件 * 减少错误的显示 * 标准配置 * vllm参数配置 * 增加智谱插件 * 删除本地fschat配置 * 删除本地fschat配置,pydantic升级到2 * 删除本地fschat workers * openai-plugins-list.json * 升级agent,pydantic升级到2 * fix model_config是系统关键词问题 * embeddings模块集成openai plugins插件,使用统一api调用 * loom模型服务update_store更新逻辑 * 集成LOOM在线embedding业务 * 本地知识库搜索字段修改 * 知识库在线api接入点配置在线api接入点配置更新逻辑 * Update model_config.py.example * 修改模型配置方式,所有模型以 openai 兼容框架的形式接入,chatchat 自身不再加载模型。 改变 Embeddings 模型改为使用框架 API,不再手动加载,删除自定义 Embeddings Keyword 代码 修改依赖文件,移除 torch transformers 等重依赖 暂时移出对 loom 的集成 后续: 1、优化目录结构 2、检查合并中有无被覆盖的 0.2.10 内容 * move document_loaders & text_splitter under server * make torch & transformers optional import pydantic Model & Field from langchain.pydantic_v1 instead of pydantic.v1 * - pydantic 限定为 v1,并统一项目中所有 pydantic 导入路径,为以后升级 v2 做准备 - 重构 api.py: - 按模块划分为不同的 router - 添加 openai 兼容的转发接口,项目默认使用该接口以实现模型负载均衡 - 添加 /tools 接口,可以获取/调用编写的 agent tools - 移除所有 EmbeddingFuncAdapter,统一改用 get_Embeddings - 待办: - /chat/chat 接口改为 openai 兼容 - 添加 /chat/kb_chat 接口,openai 兼容 - 改变 ntlk/knowledge_base/logs 等数据目录位置 * 移除 llama-index 依赖;修复 /v1/models 错误 * 原因:windows下启动失败提示补充python-multipart包 (#3184) 改动:requirements添加python-multipart==0.0.9 版本:0.0.9 Requires: Python >=3.8 Co-authored-by: XuCai <liangxc@akulaku.com> * 添加 xinference 本地模型和自定义模型配置 UI: streamlit run model_loaders/xinference_manager.py * update xinference manager ui * fix merge conflict * model_config 中补充 oneapi 默认在线模型;/v1/models 接口支持 oneapi 平台,统一返回模型列表 * 重写 calculate 工具 * 调整根目录结构,kb/logs/media/nltk_data 移动到专用数据目录(可配置,默认 data)。注意知识库文件要做相应移动 * update kb_config.py.example * 优化 ES 知识库 - 开发者 - get_OpenAIClient 的 local_wrap 默认值改为 False,避免 API 服务未启动导致其它功能受阻(如Embeddings) - 修改 ES 知识库服务: - 检索策略改为 ApproxRetrievalStrategy - 设置 timeout 为 60, 避免文档过多导致 ConnecitonTimeout Error - 修改 LocalAIEmbeddings,使用多线程进行 embed_texts,效果不明显,瓶颈可能主要在提供 Embedding 的服务器上 * 修复glm3 agent被注释的agent会话文本结构解析代码 看起来输出的文本占位符如下,目前解析代码是有问题的 Thought <|assistant|> Action\r ```python tool_call(action_input) ```<|observation|> * make qwen agent work with langchain>=0.1 (#3228) * make xinference model manager support xinference 0.9.x * 使用多进程提高导入知识库的速度 (#3276) * xinference的代码 先传 我后面来改 * Delete server/xinference directory * Create khazic * diiii diii * Revert "xinference的代码" * fix markdown header split (#1825) (#3324) * dify model_providers configuration This module provides the interface for invoking and authenticating various models, and offers Dify a unified information and credentials form rule for model providers. * fix merge conflict: langchain Embeddings not imported in server.utils * 添加 react 编写的新版 WEBUI (#3417) * feat:提交前端代码 * feat:提交logo样式切换 * feat:替换avatar、部分位置icon、chatchat相关说明、git链接、Wiki链接、关于、设置、反馈与建议等功能,关闭lobehub自检更新功能 * fix:移除多余代码 --------- Co-authored-by: liunux4odoo <41217877+liunux4odoo@users.noreply.github.com> * model_providers bootstrap * model_providers bootstrap * update to pydantic v2 (#3486) * 使用poetry管理项目 * 使用poetry管理项目 * dev分支解决pydantic版本冲突问题,增加ollama配置,支持ollama会话和向量接口 (#3508) * dev分支解决pydantic版本冲突问题,增加ollama配置,支持ollama会话和向量接口 1、因dev版本的pydantic升级到了v2版本,由于在class History(BaseModel)中使用了from server.pydantic_v1,而fastapi的引用已变为pydantic的v2版本,所以fastapi用v2版本去校验用v1版本定义的对象,当会话历史histtory不为空的时候,会报错:TypeError: BaseModel.validate() takes 2 positional arguments but 3 were given。经测试,解方法为在class History(BaseModel)中也使用v2版本即可; 2、配置文件参照其它平台配置,增加了ollama平台相关配置,会话模型用户可根据实际情况自行添加,向量模型目前支持nomic-embed-text(必须升级ollama到0.1.29以上)。 3、因ollama官方只在会话部分对openai api做了兼容,向量api暂未适配,好在langchain官方库支持OllamaEmbeddings,因而在get_Embeddings方法中添加了相关支持代码。 * 修复 pydantic 升级到 v2 后 DocumentWithVsID 和 /v1/embeddings 兼容性问题 --------- Co-authored-by: srszzw <srszzw@163.com> Co-authored-by: liunux4odoo <liunux@qq.com> * 对python的要求降级到py38 * fix bugs; make poetry using tsinghua mirror of pypi * update gitignore; remove unignored files * update wiki sub module * 20240326 * 20240326 * qqqq * 删除历史文件 * 移动项目模块 * update .gitignore; fix model version error in api_schemas * 封装ModelManager * - 重写 tool 部分: (#3553) - 简化 tool 的定义方式 - 所有 tool 和 tool_config 支持热加载 - 修复:json_schema_extra warning * 使用yaml加载用户配置适配器 * 格式化代码 * 格式化 * 优化工具定义;添加 openai 兼容的统一 chat 接口 (#3570) - 修复: - Qwen Agent 的 OutputParser 不再抛出异常,遇到非 COT 文本直接返回 - CallbackHandler 正确处理工具调用信息 - 重写 tool 定义方式: - 添加 regist_tool 简化 tool 定义: - 可以指定一个用户友好的名称 - 自动将函数的 __doc__ 作为 tool.description - 支持用 Field 定义参数,不再需要额外定义 ModelSchema - 添加 BaseToolOutput 封装 tool 返回结果,以便同时获取原始值、给LLM的字符串值 - 支持工具热加载(有待测试) - 增加 openai 兼容的统一 chat 接口,通过 tools/tool_choice/extra_body 不同参数组合支持: - Agent 对话 - 指定工具调用(如知识库RAG) - LLM 对话 - 根据后端功能更新 webui * 修复:search_local_knowledge_base 工具返回值错误;/tools 路由错误;webui 中“正在思考”一直显示 (#3571) * 添加 openai 兼容的 files 接口 (#3573) * 使用BootstrapWebBuilder适配RESTFulOpenAIBootstrapBaseWeb加载 * 格式化和代码检查说明 * 模型列表适配 * make format * chat_completions接口报文适配 * make format * xinference 插件示例 * 一些默认参数 * exec path fix * 解决ollama部署的qwen,执行agent,返回的json格式不正确问题。 * provider_configuration.py 查询所有的平台信息,包含计费策略和配置schema_validators(参数必填信息校验规则) /workspaces/current/model-providers 查询平台模型分类的详细默认信息,包含了模型类型,模型参数,模型状态 workspaces/current/models/model-types/{model_type} * 开发手册 * 兼容model_providers,集成webui及API中平台配置的初始化 (#3625) * provider_configuration init of MODEL_PLATFORMS * 开发手册 * 兼容model_providers,集成webui及API中平台配置的初始化 * Dev model providers (#3628) * gemini 初始化参数问题 * gemini 同步工具调用 * embedding convert endpoint * 修复 --api -w命令 * /v1/models 接口返回值由 List[Model] 改为 {'data': List[Model]},兼容最新版 xinference * 3.8兼容 (#3769) * 增加使用说明 * 3.8兼容性配置 * fix * formater * 不同平台兼容测试用例 * embedding兼容 * 增加日志信息 * pip源仓库设置,一些版本问题,启动说明 配置说明 (#3854) * 仓库设置,一些版本问题 * pip源仓库设置,一些版本问题,启动说明 * 配置说明 * 泛型标记错误 (#3855) * 仓库设置,一些版本问题 * pip源仓库设置,一些版本问题,启动说明 * 配置说明 * 发布的依赖信息 * 泛型标记错误 * 泛型标记错误 * CICD github action build publish pypi、Release Tag (#3886) * 测试用例 * CICD 流程 * CICD 流程 * CICD 流程 * 一些agent数据处理的问题,model_runtime模块的说明文档 (#3943) * 一些agent数据出来的问题 * Changes: - Translated and updated the Model Runtime documentation to reflect the latest changes and features. - Clarified the decoupling benefits of the Model Runtime module from the Chatchat service. - Removed outdated information regarding the model configuration storage module. - Detailed the retained functionalities post-removal of the Dify configuration page. - Provided a comprehensive overview of the Model Runtime's three-layered structure. - Included the status of the `fetch-from-remote` feature and its non-implementation in Dify. - Added instructions for custom service provider model capabilities. * - 新功能 (#3944) - streamlit 更新到 1.34,webui 支持 Dialog 操作 - streamlit-chatbox 更新到 1.1.12,更好的多会话支持 - 开发者 - 在 API 中增加项目图片路由(/img/{file_name}),方便前端使用 * 修改包名 * 修改包信息 * ollama配置解析问题 * 用户配置动态加载 (#3951) * version = "0.3.0.20240506" * version = "0.3.0.20240506" * version = "0.3.0.20240506" * version = "0.3.0.20240506" * 启动说明 * 一些bug * 修复了一些配置重载的bug * 配置的加载行为修改 * 配置的加载行为修改 * agent代码优化 * ollama 代码升级,使用openai协议 * 支持deepseek客户端 * contributing (#4043) * 添加了贡献说明 docs/contributing,包含了一些代码仓库说明和开发规范,以及在model_providers下面编写了一些单元测试的示例 * 关于providers的配置说明 * python3.8兼容 * python3.8兼容 * ollama兼容 * ollama兼容 * 一些兼容 pydantic<3,>=1.9.0 的代码, * 一些兼容 pydantic<3,>=1.9.0 model_config 的代码, * make format * test * 更新版本 * get_img_base64 * get_img_base64 * get_img_base64 * get_img_base64 * get_img_base64 * 统一模型类型编码 * 向量处理问题 * 优化目录结构 (#4058) * 优化目录结构 * 修改一些测试问题 --------- Co-authored-by: glide-the <2533736852@qq.com> * repositories * 调整日志 * 调整日志zdf * 增加可选依赖extras * feat:Added some documentation. (#4085) * feat:Added some documentation. * feat:Added some documentation. * feat:Added some documentation. --------- Co-authored-by: yuehuazhang <yuehuazhang@tencent.com> * fix code.md typos * fix chatchat-server/pyproject.toml typos * feat:README (#4118) Co-authored-by: yuehuazhang <yuehuazhang@tencent.com> * 初始化数据库集成model_providers * 关闭守护进程 * 1、修改知识库列表接口,返回全量属性字段,同时修改受影响的相关代码。 (#4119) 2、run_in_process_pool改为run_in_thread_pool,解决兼容性问题。 3、poetry配置文件修复。 * 动态更新Prompt中的知识库描述信息,使大模型更容易判断使用哪个知识库。 (#4121) * 1、修改知识库列表接口,返回全量属性字段,同时修改受影响的相关代码。 2、run_in_process_pool改为run_in_thread_pool,解决兼容性问题。 3、poetry配置文件修复。 * 1、动态更新Prompt中的知识库描述信息,使大模型更容易判断使用哪个知识库。 * fix: 补充 xinference 配置信息 (#4123) * feat:README * feat:补充 xinference 平台 llm 和 embedding 模型配置. --------- Co-authored-by: yuehuazhang <yuehuazhang@tencent.com> * 知识库工具的下拉列表改为动态获取,不必重启服务。 (#4126) * 1、知识库工具的下拉列表改为动态获取,不必重启服务。 * update README and imgs * update README and imgs * update README and imgs * update README and imgs * 修改安装说明描述问题 * make formater * 更新版本"0.3.0.20240606 * Update code.md * 优化知识库相关功能 (#4153) - 新功能 - pypi 包新增 chatchat-kb 命令脚本,对应 init_database.py 功能 - 开发者 - _model_config.py 中默认包含 xinference 配置项 - 所有涉及向量库的操作,前置检查当前 Embed 模型是否可用 - /knowledge_base/create_knowledge_base 接口增加 kb_info 参数 - /knowledge_base/list_files 接口返回所有数据库字段,而非文件名称列表 - 修正 xinference 模型管理脚本 * 消除警告 * 一些依赖问题 * 增加text2sql工具,支持特定表、智能判定表,支持对表名进行额外说明 (#4154) * 1、增加text2sql工具,支持特定表、智能判定表,支持对表名进行额外说明 * 支持SQLAlchemy大部分数据库、新增read-only模式,提高安全性、增加text2sql使用建议 (#4155) * 1、修改text2sql连接配置,支持SQLAlchemy大部分数据库; 2、新增read-only模式,若有数据库写保护需求,会从大模型判断、SQLAlchemy拦截器两个层面进行写拦截,提高安全性; 3、增加text2sql使用建议; * dotenv * dotenv 配置 * 用户工作空间操作 (#4156) 工作空间的配置预设,提供ConfigBasic建造方法产生实例。 该类的实例对象用于存储工作空间的配置信息,如工作空间的路径等 工作空间的配置信息存储在用户的家目录下的.config/chatchat/workspace/workspace_config.json文件中。 注意:不存在则读取默认 提供了操作入口 指令` chatchat-config` 工作空间配置 options: ``` -h, --help show this help message and exit -v {true,false}, --verbose {true,false} 是否开启详细日志 -d DATA, --data DATA 数据存放路径 -f FORMAT, --format FORMAT 日志格式 --clear 清除配置 ``` * 配置路径问题 * fix faiss_cache bug * Feature(File RAG): add file_rag in chatchat-server, add ensemble retriever and vectorstore retriever. * Feature(File RAG): add file_rag in chatchat-server, add ensemble retriever and vectorstore retriever. * fix xinference manager bug * Fix(File RAG): use jieba instead of cutword * Fix(File RAG): update kb_doc_api.py * 工作空间的配置预设,提供ConfigBasic建造 实例。 (#4158) - ConfigWorkSpace接口说明 ```text ConfigWorkSpace是一个配置工作空间的抽象类,提供基础的配置信息存储和读取功能。 提供ConfigFactory建造方法产生实例。 该类的实例对象用于存储工作空间的配置信息,如工作空间的路径等 工作空间的配置信息存储在用户的家目录下的.chatchat/workspace/workspace_config.json文件中。 注意:不存在则读取默认 ``` * 编写配置说明 * 编写配置说明 --------- Co-authored-by: liunux4odoo <41217877+liunux4odoo@users.noreply.github.com> Co-authored-by: glide-the <2533736852@qq.com> Co-authored-by: tonysong <tonysong@digitalgd.com.cn> Co-authored-by: songpb <songpb@gmail.com> Co-authored-by: showmecodett <showmecodett@gmail.com> Co-authored-by: zR <2448370773@qq.com> Co-authored-by: zqt <1178747941@qq.com> Co-authored-by: zqt996 <67185303+zqt996@users.noreply.github.com> Co-authored-by: fengyaojie <fengyaojie@xdf.cn> Co-authored-by: Hans WAN <hanswan@tom.com> Co-authored-by: thinklover <thinklover@gmail.com> Co-authored-by: liunux4odoo <liunux@qq.com> Co-authored-by: xucailiang <74602715+xucailiang@users.noreply.github.com> Co-authored-by: XuCai <liangxc@akulaku.com> Co-authored-by: dignfei <913015993@qq.com> Co-authored-by: Leb <khazzz1c@gmail.com> Co-authored-by: Sumkor <sumkor@foxmail.com> Co-authored-by: panhong <381500590@qq.com> Co-authored-by: srszzw <741992282@qq.com> Co-authored-by: srszzw <srszzw@163.com> Co-authored-by: yuehua-s <41819795+yuehua-s@users.noreply.github.com> Co-authored-by: yuehuazhang <yuehuazhang@tencent.com>
9.9 KiB
状态管理最佳实践
LobeChat 不同于传统 CRUD 的网页,存在大量的富交互能力,如何设计一个易于开发与易于维护的数据流架构非常重要。本篇文档将介绍 LobeChat 中的数据流管理最佳实践。
TOC
概念要素
| 概念名词 | 解释 |
|---|---|
| store | 状态库 (store),包含存储应用的状态、动作。允许在应用渲染中访问和修改状态。 |
| state | 状态 (state) 是指应用程序的数据,存储了应用程序的当前状态,状态的变化一定会触发应用的重新渲染,以反映新的状态。 |
| action | 动作 (action) 是一个操作函数,它描述了应用程序中发生的交互事件。动作通常是由用户交互、网络请求或定时器等触发。 action 可以是同步的,也可以是异步的。 |
| reducer | 归约器 (reducer) 是一个纯函数,它接收当前状态和动作作为参数,并返回一个新的状态。它用于根据动作类型来更新应用程序的状态。Reducer 是一个纯函数,不存在副作用,因此一定是 同步 函数。 |
| selector | 选择器 (selector) 是一个函数,用于从应用程序的状态中获取特定的数据。它接收应用程序的状态作为参数,并返回经过计算或转换后的数据。Selector 可以将状态的一部分或多个状态组合起来,以生成派生的数据。Selector 通常用于将应用程序的状态映射到组件的 props,以供组件使用。 |
| slice | 切片 (slice) 是一个概念,用于表达数据模型状态的一部分。它指定了一个状态切片(slice),以及与该切片相关的 state、action、reducer 和 selector。使用 Slice 可以将大型的 Store 拆分为更小的、可维护的子类型。 |
结构分层
在不同的复杂度下,我们可以将 Store 的结构组织可以由很大的不同:
- 较低复杂度:一般包含 2~5 个 state 、3 ~ 4 个 action。此时的结构一般直接一个
store.ts+ 一个initialState.ts即可。
DataFill/store
├── index.ts
└── initialState.ts
- 一般复杂度 :一般复杂度存在 5 ~ 15 个 state、 5 ~ 10 个 action,可能会存在 selector 实现派生状态,也有可能存在 reducer 简化部分数据变更的复杂度。此时的结构一般为一个
store.ts+ 一个initialState.ts+ 一个selectors.ts/reducer.ts。
IconPicker/store
├── index.ts
├── initialState.ts
├── selectors.ts
└── store.ts
SortableList/store
├── index.ts
├── initialState.ts
├── listDataReducer.ts
└── store.ts
- 中等复杂度 : 中等复杂度存在 15 ~ 30 个 state、 10 ~ 20 个 action,大概率会存在 selector 来聚合派生状态,大概率存在 reducer 简化部分数据变更的复杂度。
此时结构,用单一的 action store 已经较难维护,往往会拆解出来多个 slice 用于管理不同的 action。 下方的代码代表了 SortableTree 组件的内部数据流:
SortableTree/store
├── index.ts
├── initialState.ts
├── selectors.ts
├── slices
├── crudSlice.ts
├── dndSlice.ts
└── selectionSlice.ts
├── store.ts
└── treeDataReducer.ts
- 高等复杂度:高等复杂度存在 30 个以上的 state、 20 个以上的 action。必然需要 slice 做模块化内聚。在每个 slice 中都各自声明了各自的 initState、 action、reducer 与 selector。
下述这个数据流的目录结构是之前一版 SessionStore,具有很高的复杂度,实现了大量的业务逻辑。但借助于 slice 的模块化和分形架构的心智,我们可以很容易地找到对应的模块,新增功能与迭代都很易于维护。
LobeChat SessionStore
├── index.ts
├── initialState.ts
├── selectors.ts
├── slices
│ ├── agentConfig
│ │ ├── action.ts
│ │ ├── index.ts
│ │ ├── initialState.ts
│ │ └── selectors.ts
│ ├── chat
│ │ ├── actions
│ │ │ ├── index.ts
│ │ │ ├── message.ts
│ │ │ └── topic.ts
│ │ ├── index.ts
│ │ ├── initialState.ts
│ │ ├── reducers
│ │ │ ├── message.ts
│ │ │ └── topic.ts
│ │ ├── selectors
│ │ │ ├── chat.ts
│ │ │ ├── index.ts
│ │ │ ├── token.ts
│ │ │ ├── topic.ts
│ │ │ └── utils.ts
│ │ └── utils.ts
│ └── session
│ ├── action.ts
│ ├── index.ts
│ ├── initialState.ts
│ ├── reducers
│ │ └── session.ts
│ └── selectors
│ ├── export.ts
│ ├── index.ts
│ └── list.ts
└── store.ts
LobeChat SessionStore 目录结构最佳实践
在 LobeChat 应用中,由于会话管理是一个复杂的功能模块,因此我们采用了 slice 模式 来组织数据流。下面是 LobeChat SessionStore 的目录结构,其中每个目录和文件都有其特定的用途:
src/store/session
├── index.ts # SessionStore 的聚合导出文件
├── initialState.ts # 聚合了所有 slice 的 initialState
├── selectors.ts # 从各个 slices 导出的 selector
├── store.ts # SessionStore 的创建和使用
├── helpers.ts # 辅助函数
└── slices # 各个独立的功能切片
├── agent # 助理 Slice
│ ├── action.ts
│ ├── index.ts
│ └── selectors.ts
└── session # 会话 Slice
├── action.ts
├── helpers.ts
├── initialState.ts
└── selectors
├── export.ts
├── list.ts
└── index.ts
SessionStore 的实现
在 LobeChat 中,SessionStore 被设计为管理会话状态和逻辑的核心模块。它由多个 Slices 组成,每个 Slice 管理一部分相关的状态和逻辑。下面是一个简化的 SessionStore 的实现示例:
store.ts
import { PersistOptions, devtools, persist, subscribeWithSelector } from 'zustand/middleware';
import { shallow } from 'zustand/shallow';
import { devtools } from 'zustand/middleware';
import { createWithEqualityFn } from 'zustand/traditional';
import { SessionStoreState, initialState } from './initialState';
import { AgentAction, createAgentSlice } from './slices/agent/action';
import { SessionAction, createSessionSlice } from './slices/session/action';
// =============== 聚合 createStoreFn ============ //
export type SessionStore = SessionAction & AgentAction & SessionStoreState;
const createStore: StateCreator<SessionStore, [['zustand/devtools', never]]> = (...parameters) => ({
...initialState,
...createAgentSlice(...parameters),
...createSessionSlice(...parameters),
});
// =============== 实装 useStore ============ //
export const useSessionStore = createWithEqualityFn<SessionStore>()(
persist(
subscribeWithSelector(
devtools(createStore, {
name: 'LobeChat_Session' + (isDev ? '_DEV' : ''),
}),
),
persistOptions,
),
shallow,
);
在这个 store.ts 文件中,我们创建了一个 useSessionStore 钩子,它使用 zustand 库来创建一个全局状态管理器。我们将 initialState 和每个 Slice 的状态和动作合并,以创建完整的 SessionStore。
slices/session/action.ts
import { StateCreator } from 'zustand';
import { SessionStore } from '@/store/session';
export interface SessionActions {
/**
* A custom hook that uses SWR to fetch sessions data.
*/
useFetchSessions: () => SWRResponse<any>;
}
export const createSessionSlice: StateCreator<
SessionStore,
[['zustand/devtools', never]],
[],
SessionAction
> = (set, get) => ({
useFetchSessions: () => {
// ...初始化会话的逻辑
},
// ...其他动作的实现
});
在 action.ts 文件中,我们定义了一个 SessionActions 接口来描述会话相关的动作,并且实现了一个 useFetchSessions 函数来创建这些动作。然后,我们将这些动作与初始状态合并,以形成会话相关的 Slice。
通过这种结构分层和模块化的方法,我们可以确保 LobeChat 的 SessionStore 是清晰、可维护的,同时也便于扩展和测试。