Langchain-Chatchat/README.md
2024-06-13 09:13:37 +08:00

166 lines
11 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

![](docs/img/logo-long-chatchat-trans-v2.png)
🌍 [READ THIS IN ENGLISH](README_en.md)
🌍 [日本語で読む](README_ja.md)
📃 **LangChain-Chatchat** (原 Langchain-ChatGLM)
基于 ChatGLM 等大语言模型与 Langchain 等应用框架实现,开源、可离线部署的 RAG 与 Agent 应用项目。
---
## 目录
* [介绍](README.md#介绍)
* [解决的痛点](README.md#解决的痛点)
* [快速上手](README.md#快速上手)
* [1. 环境配置](README.md#1-环境配置)
* [2. 模型下载](README.md#2-模型下载)
* [3. 初始化知识库和配置文件](README.md#3-初始化知识库和配置文件)
* [4. 一键启动](README.md#4-一键启动)
* [5. 启动界面示例](README.md#5-启动界面示例)
* [联系我们](README.md#联系我们)
## 介绍
🤖️ 一种利用 [langchain](https://github.com/langchain-ai/langchain)
思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。
💡 受 [GanymedeNil](https://github.com/GanymedeNil) 的项目 [document.ai](https://github.com/GanymedeNil/document.ai)
和 [AlexZhangji](https://github.com/AlexZhangji)
创建的 [ChatGLM-6B Pull Request](https://github.com/THUDM/ChatGLM-6B/pull/216)
启发,建立了全流程可使用开源模型实现的本地知识库问答应用。本项目的最新版本中通过使用 [FastChat](https://github.com/lm-sys/FastChat)
接入 Vicuna, Alpaca, LLaMA, Koala, RWKV 等模型,依托于 [langchain](https://github.com/langchain-ai/langchain)
框架支持通过基于 [FastAPI](https://github.com/tiangolo/fastapi) 提供的 API
调用服务,或使用基于 [Streamlit](https://github.com/streamlit/streamlit) 的 WebUI 进行操作。
✅ 本项目支持市面上主流的开源 LLM、 Embedding 模型与向量数据库,可实现全部使用**开源**模型**离线私有部署**,可以免费商用。与此同时,本项目也支持
OpenAI GPT API 的调用,并将在后续持续扩充对各类模型及模型 API 的接入。
⛓️ 本项目实现原理如下图所示,过程包括加载文件 -> 读取文本 -> 文本分割 -> 文本向量化 -> 问句向量化 ->
在文本向量中匹配出与问句向量最相似的 `top k`个 -> 匹配出的文本作为上下文和问题一起添加到 `prompt`中 -> 提交给 `LLM`生成回答。
📺 [原理介绍视频](https://www.bilibili.com/video/BV13M4y1e7cN/?share_source=copy_web&vd_source=e6c5aafe684f30fbe41925d61ca6d514)
![实现原理图](docs/img/langchain+chatglm.png)
从文档处理角度来看,实现流程如下:
![实现原理图2](docs/img/langchain+chatglm2.png)
🚩 本项目未涉及微调、训练过程,但可利用微调或训练对本项目效果进行优化。
🌐 [AutoDL 镜像](https://www.codewithgpu.com/i/chatchat-space/Langchain-Chatchat/Langchain-Chatchat) 中 `0.2.10`
版本所使用代码已更新至本项目 `v0.2.10` 版本。
🐳 [Docker 镜像](registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.7) 已经更新到 ```0.2.7``` 版本。
🌲 一行命令运行 Docker
```shell
docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.7
```
🧩 本项目有一个非常完整的 [Wiki](https://github.com/chatchat-space/Langchain-Chatchat/wiki/) README只是一个简单的介绍_
_仅仅是入门教程能够基础运行__。
如果你想要更深入的了解本项目,或者想对本项目做出贡献。请移步 [Wiki](https://github.com/chatchat-space/Langchain-Chatchat/wiki/)
界面
## Langchain-Chatchat 提供哪些功能
### 0.3.x 版本功能一览
|功能|0.2.x|0.3.x|
|----|-----|-----|
|模型接入|本地fastchat<br>在线XXXModelWorker|本地model_provider,支持大部分主流模型加载框架<br>在线oneapi<br>所有模型接入均兼容openai sdk|
|Agent|❌不稳定|✅针对ChatGLM3和QWen进行优化,Agent能力显著提升||
|LLM对话|✅|✅||
|知识库对话|✅|✅||
|搜索引擎对话|✅|✅||
|文件对话|✅仅向量检索|✅统一为File RAG功能,支持BM25+KNN等多种检索方式||
|数据库对话|❌|✅||
|ARXIV文献对话|❌|✅||
|Wolfram对话|❌|✅||
|文生图|❌|✅||
|本地知识库管理|✅|✅||
|WEBUI|✅|✅更好的多会话支持,自定义系统提示词...|
0.3.x的核心功能由 Agent 实现,但用户也可以手动实现工具调用:
|操作方式|实现的功能|适用场景|
|-------|---------|-------|
|选中"启用Agent",选择多个工具|由LLM自动进行工具调用|使用ChatGLM3/Qwen或在线API等具备Agent能力的模型|
|选中"启用Agent",选择单个工具|LLM仅解析工具参数|使用的模型Agent能力一般,不能很好的选择工具<br>想手动选择功能|
|不选中"启用Agent",选择单个工具|不使用Agent功能的情况下,手动填入参数进行工具调用|使用的模型不具备Agent能力|
更多功能和更新请实际部署体验.
### 已支持的模型部署框架与模型
本项目中已经支持市面上主流的如 GLM-4, Qwen2 等新近开源本地大语言模型和 Embedding 模型,这些模型需要用户自行启动模型部署框架后,通过修改配置信息接入项目,本项目已支持的本地模型部署框架如下:
| 模型部署框架 | Xinference | LocalAI | Ollama | FastChat |
|--------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------|
| OpenAI API 接口对齐 | ✅ | ✅ | ✅ | ✅ |
| 加速推理引擎 | GPTQ, GGML, vLLM, TensorRT | GPTQ, GGML, vLLM, TensorRT | GGUF, GGML | vLLM |
| 接入模型类型 | LLM, Embedding, Rerank, Text-to-Image, Vision, Audio | LLM, Embedding, Rerank, Text-to-Image, Vision, Audio | LLM, Text-to-Image, Vision | LLM, Vision |
| Function Call | ✅ | ✅ | ✅ | / |
| 更多平台支持(CPU, Metal) | ✅ | ✅ | ✅ | ✅ |
| 异构 | ✅ | ✅ | / | / |
| 集群 | ✅ | ✅ | / | / |
| 操作文档链接 | [Xinference 文档](https://inference.readthedocs.io/zh-cn/latest/models/builtin/index.html) | [LocalAI 文档](https://localai.io/model-compatibility/) | [Ollama 文档](https://github.com/ollama/ollama?tab=readme-ov-file#model-library) | [FastChat 文档](https://github.com/lm-sys/FastChat#install) |
| 可用模型 | [Xinference 已支持模型](https://inference.readthedocs.io/en/latest/models/builtin/index.html) | [LocalAI 已支持模型](https://localai.io/model-compatibility/#/) | [Ollama 已支持模型](https://ollama.com/library#/) | [FastChat 已支持模型](https://github.com/lm-sys/FastChat/blob/main/docs/model_support.md) |
除上述本地模型加载框架外,项目中也支持了在线 API 的接入。
## 快速上手
### 安装部署
<待补充>
### 旧版本迁移
* 0.3.x 结构改变很大,强烈建议您按照文档重新部署. 以下指南不保证100%兼容和成功. 记得提前备份重要数据!
- 首先按照 `安装部署` 中的步骤配置运行环境
- 配置 `DATA` 等选项
- 将 0.2.x 项目的 knowledge_base 目录拷贝到配置的 `DATA` 目录下
### 注意
以上方式只是为了快速上手,如果需要更多的功能和自定义启动方式,请参考[Wiki](https://github.com/chatchat-space/Langchain-Chatchat/wiki/)
---
## 项目里程碑
+ `2023年4月`: `Langchain-ChatGLM 0.1.0` 发布,支持基于 ChatGLM-6B 模型的本地知识库问答。
+ `2023年8月`: `Langchain-ChatGLM` 改名为 `Langchain-Chatchat`,发布 `0.2.0` 版本,使用 `fastchat` 作为模型加载方案,支持更多的模型和数据库。
+ `2023年10月`: `Langchain-Chatchat 0.2.5` 发布,推出 Agent 内容,开源项目在`Founder Park & Zhipu AI & Zilliz`
举办的黑客马拉松获得三等奖。
+ `2023年12月`: `Langchain-Chatchat` 开源项目获得超过 **20K** stars.
+ `2024年6月`: `Langchain-Chatchat 0.3.0` 发布,带来全新项目架构。
+ 🔥 让我们一起期待未来 Chatchat 的故事 ···
---
## 联系我们
### Telegram
[![Telegram](https://img.shields.io/badge/Telegram-2CA5E0?style=for-the-badge&logo=telegram&logoColor=white "langchain-chatglm")](https://t.me/+RjliQ3jnJ1YyN2E9)
### 项目交流群
<img src="docs/img/qr_code_96.jpg" alt="二维码" width="300" />
🎉 Langchain-Chatchat 项目微信交流群,如果你也对本项目感兴趣,欢迎加入群聊参与讨论交流。
### 公众号
<img src="docs/img/official_wechat_mp_account.png" alt="二维码" width="300" />
🎉 Langchain-Chatchat 项目官方公众号,欢迎扫码关注。