356 lines
16 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import base64
import streamlit as st
from streamlit_antd_components.utils import ParseItems
from webui_pages.dialogue.utils import process_files
from webui_pages.loom_view_client import build_plugins_name, find_menu_items_by_index, set_llm_select, \
get_select_model_endpoint
from webui_pages.utils import *
from streamlit_chatbox import *
from streamlit_modal import Modal
from datetime import datetime
import os
import re
import time
from configs import (LLM_MODEL_CONFIG, SUPPORT_AGENT_MODELS, TOOL_CONFIG, OPENAI_KEY, OPENAI_PROXY)
from server.callback_handler.agent_callback_handler import AgentStatus
from server.utils import MsgType
import uuid
from typing import List, Dict
import streamlit_antd_components as sac
chat_box = ChatBox(
assistant_avatar=os.path.join(
"img",
"chatchat_icon_blue_square_v2.png"
)
)
def get_messages_history(history_len: int, content_in_expander: bool = False) -> List[Dict]:
'''
返回消息历史。
content_in_expander控制是否返回expander元素中的内容一般导出的时候可以选上传入LLM的history不需要
'''
def filter(msg):
content = [x for x in msg["elements"] if x._output_method in ["markdown", "text"]]
if not content_in_expander:
content = [x for x in content if not x._in_expander]
content = [x.content for x in content]
return {
"role": msg["role"],
"content": "\n\n".join(content),
}
return chat_box.filter_history(history_len=history_len, filter=filter)
@st.cache_data
def upload_temp_docs(files, _api: ApiRequest) -> str:
'''
将文件上传到临时目录,用于文件对话
返回临时向量库ID
'''
return _api.upload_temp_docs(files).get("data", {}).get("id")
def parse_command(text: str, modal: Modal) -> bool:
'''
检查用户是否输入了自定义命令,当前支持:
/new {session_name}。如果未提供名称默认为“会话X”
/del {session_name}。如果未提供名称,在会话数量>1的情况下删除当前会话。
/clear {session_name}。如果未提供名称,默认清除当前会话
/stop {session_name}。如果未提供名称,默认停止当前会话
/help。查看命令帮助
返回值输入的是命令返回True否则返回False
'''
if m := re.match(r"/([^\s]+)\s*(.*)", text):
cmd, name = m.groups()
name = name.strip()
conv_names = chat_box.get_chat_names()
if cmd == "help":
modal.open()
elif cmd == "new":
if not name:
i = 1
while True:
name = f"会话{i}"
if name not in conv_names:
break
i += 1
if name in st.session_state["conversation_ids"]:
st.error(f"该会话名称 “{name}” 已存在")
time.sleep(1)
else:
st.session_state["conversation_ids"][name] = uuid.uuid4().hex
st.session_state["cur_conv_name"] = name
elif cmd == "del":
name = name or st.session_state.get("cur_conv_name")
if len(conv_names) == 1:
st.error("这是最后一个会话,无法删除")
time.sleep(1)
elif not name or name not in st.session_state["conversation_ids"]:
st.error(f"无效的会话名称:“{name}")
time.sleep(1)
else:
st.session_state["conversation_ids"].pop(name, None)
chat_box.del_chat_name(name)
st.session_state["cur_conv_name"] = ""
elif cmd == "clear":
chat_box.reset_history(name=name or None)
return True
return False
def dialogue_page(api: ApiRequest, is_lite: bool = False):
st.session_state.setdefault("conversation_ids", {})
st.session_state["conversation_ids"].setdefault(chat_box.cur_chat_name, uuid.uuid4().hex)
st.session_state.setdefault("file_chat_id", None)
st.session_state.setdefault("select_plugins_info", None)
st.session_state.setdefault("select_model_worker", None)
# 弹出自定义命令帮助信息
modal = Modal("自定义命令", key="cmd_help", max_width="500")
if modal.is_open():
with modal.container():
cmds = [x for x in parse_command.__doc__.split("\n") if x.strip().startswith("/")]
st.write("\n\n".join(cmds))
with st.sidebar:
conv_names = list(st.session_state["conversation_ids"].keys())
index = 0
if st.session_state.get("cur_conv_name") in conv_names:
index = conv_names.index(st.session_state.get("cur_conv_name"))
conversation_name = st.selectbox("当前会话", conv_names, index=index)
chat_box.use_chat_name(conversation_name)
conversation_id = st.session_state["conversation_ids"][conversation_name]
with st.expander("模型选择"):
plugins_menu = build_plugins_name()
items, _ = ParseItems(plugins_menu).multi()
if len(plugins_menu) > 0:
llm_model_index = sac.menu(plugins_menu, index=1, return_index=True)
plugins_info, llm_model_worker = find_menu_items_by_index(items, llm_model_index)
set_llm_select(plugins_info, llm_model_worker)
else:
st.info("没有可用的插件")
# 传入后端的内容
model_config = {key: {} for key in LLM_MODEL_CONFIG.keys()}
tool_use = True
for key in LLM_MODEL_CONFIG:
if key == 'llm_model':
continue
if key == 'action_model':
first_key = next(iter(LLM_MODEL_CONFIG[key]))
if first_key not in SUPPORT_AGENT_MODELS:
st.warning("不支持Agent的模型无法执行任何工具调用")
tool_use = False
continue
if LLM_MODEL_CONFIG[key]:
first_key = next(iter(LLM_MODEL_CONFIG[key]))
model_config[key][first_key] = LLM_MODEL_CONFIG[key][first_key]
# 选择工具
selected_tool_configs = {}
if tool_use:
from configs import model_config as model_config_py
import importlib
importlib.reload(model_config_py)
tools = list(TOOL_CONFIG.keys())
with st.expander("工具栏"):
for tool in tools:
is_selected = st.checkbox(tool, value=TOOL_CONFIG[tool]["use"], key=tool)
if is_selected:
selected_tool_configs[tool] = TOOL_CONFIG[tool]
llm_model = None
if st.session_state["select_model_worker"] is not None:
llm_model = st.session_state["select_model_worker"]['label']
if llm_model is not None:
model_config['llm_model'][llm_model] = LLM_MODEL_CONFIG['llm_model'].get(llm_model, {})
uploaded_file = st.file_uploader("上传附件", accept_multiple_files=False)
files_upload = process_files(files=[uploaded_file]) if uploaded_file else None
# print(len(files_upload["audios"])) if files_upload else None
# if dialogue_mode == "文件对话":
# with st.expander("文件对话配置", True):
# files = st.file_uploader("上传知识文件:",
# [i for ls in LOADER_DICT.values() for i in ls],
# accept_multiple_files=True,
# )
# kb_top_k = st.number_input("匹配知识条数:", 1, 20, VECTOR_SEARCH_TOP_K)
# score_threshold = st.slider("知识匹配分数阈值:", 0.0, 2.0, float(SCORE_THRESHOLD), 0.01)
# if st.button("开始上传", disabled=len(files) == 0):
# st.session_state["file_chat_id"] = upload_temp_docs(files, api)
# Display chat messages from history on app rerun
chat_box.output_messages()
chat_input_placeholder = "请输入对话内容换行请使用Shift+Enter。输入/help查看自定义命令 "
def on_feedback(
feedback,
message_id: str = "",
history_index: int = -1,
):
reason = feedback["text"]
score_int = chat_box.set_feedback(feedback=feedback, history_index=history_index)
api.chat_feedback(message_id=message_id,
score=score_int,
reason=reason)
st.session_state["need_rerun"] = True
feedback_kwargs = {
"feedback_type": "thumbs",
"optional_text_label": "欢迎反馈您打分的理由",
}
if prompt := st.chat_input(chat_input_placeholder, key="prompt"):
if parse_command(text=prompt, modal=modal): # 用户输入自定义命令
st.rerun()
else:
history = get_messages_history(
model_config["llm_model"].get(next(iter(model_config["llm_model"])), {}).get("history_len", 1)
)
chat_box.user_say(prompt)
if files_upload:
if files_upload["images"]:
st.markdown(f'<img src="data:image/jpeg;base64,{files_upload["images"][0]}" width="300">',
unsafe_allow_html=True)
elif files_upload["videos"]:
st.markdown(
f'<video width="400" height="300" controls><source src="data:video/mp4;base64,{files_upload["videos"][0]}" type="video/mp4"></video>',
unsafe_allow_html=True)
elif files_upload["audios"]:
st.markdown(
f'<audio controls><source src="data:audio/wav;base64,{files_upload["audios"][0]}" type="audio/wav"></audio>',
unsafe_allow_html=True)
chat_box.ai_say("正在思考...")
text = ""
text_action = ""
element_index = 0
openai_config = {}
endpoint_host, select_model_name = get_select_model_endpoint()
openai_config["endpoint_host"] = endpoint_host
openai_config["model_name"] = select_model_name
openai_config["endpoint_host_key"] = OPENAI_KEY
openai_config["endpoint_host_proxy"] = OPENAI_PROXY
for d in api.chat_chat(query=prompt,
metadata=files_upload,
history=history,
model_config=model_config,
openai_config=openai_config,
conversation_id=conversation_id,
tool_config=selected_tool_configs,
):
message_id = d.get("message_id", "")
metadata = {
"message_id": message_id,
}
print(d)
if d["status"] == AgentStatus.error:
st.error(d["text"])
elif d["status"] == AgentStatus.agent_action:
formatted_data = {
"Function": d["tool_name"],
"function_input": d["tool_input"]
}
element_index += 1
formatted_json = json.dumps(formatted_data, indent=2, ensure_ascii=False)
chat_box.insert_msg(
Markdown(title="Function call", in_expander=True, expanded=True, state="running"))
text = """\n```{}\n```\n""".format(formatted_json)
chat_box.update_msg(Markdown(text), element_index=element_index)
elif d["status"] == AgentStatus.tool_end:
text += """\n```\nObservation:\n{}\n```\n""".format(d["tool_output"])
chat_box.update_msg(Markdown(text), element_index=element_index, expanded=False, state="complete")
elif d["status"] == AgentStatus.llm_new_token:
text += d["text"]
chat_box.update_msg(text, streaming=True, element_index=element_index, metadata=metadata)
elif d["status"] == AgentStatus.llm_end:
chat_box.update_msg(text, streaming=False, element_index=element_index, metadata=metadata)
elif d["status"] == AgentStatus.agent_finish:
if d["message_type"] == MsgType.IMAGE:
for url in json.loads(d["text"]).get("images", []):
url = f"{api.base_url}/media/{url}"
chat_box.insert_msg(Image(url))
chat_box.update_msg(element_index=element_index, expanded=False, state="complete")
else:
chat_box.insert_msg(Markdown(d["text"], expanded=True))
if os.path.exists("tmp/image.jpg"):
with open("tmp/image.jpg", "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode()
img_tag = f'<img src="data:image/jpeg;base64,{encoded_string}" width="300">'
st.markdown(img_tag, unsafe_allow_html=True)
os.remove("tmp/image.jpg")
# chat_box.show_feedback(**feedback_kwargs,
# key=message_id,
# on_submit=on_feedback,
# kwargs={"message_id": message_id, "history_index": len(chat_box.history) - 1})
# elif dialogue_mode == "文件对话":
# if st.session_state["file_chat_id"] is None:
# st.error("请先上传文件再进行对话")
# st.stop()
# chat_box.ai_say([
# f"正在查询文件 `{st.session_state['file_chat_id']}` ...",
# Markdown("...", in_expander=True, title="文件匹配结果", state="complete"),
# ])
# text = ""
# for d in api.file_chat(prompt,
# knowledge_id=st.session_state["file_chat_id"],
# top_k=kb_top_k,
# score_threshold=score_threshold,
# history=history,
# model=llm_model,
# prompt_name=prompt_template_name,
# temperature=temperature):
# if error_msg := check_error_msg(d):
# st.error(error_msg)
# elif chunk := d.get("answer"):
# text += chunk
# chat_box.update_msg(text, element_index=0)
# chat_box.update_msg(text, element_index=0, streaming=False)
# chat_box.update_msg("\n\n".join(d.get("docs", [])), element_index=1, streaming=False)
if st.session_state.get("need_rerun"):
st.session_state["need_rerun"] = False
st.rerun()
now = datetime.now()
with st.sidebar:
cols = st.columns(2)
export_btn = cols[0]
if cols[1].button(
"清空对话",
use_container_width=True,
):
chat_box.reset_history()
st.rerun()
warning_placeholder = st.empty()
export_btn.download_button(
"导出记录",
"".join(chat_box.export2md()),
file_name=f"{now:%Y-%m-%d %H.%M}_对话记录.md",
mime="text/markdown",
use_container_width=True,
)