更新模型执行列表和今晚修改的内容

This commit is contained in:
zR 2024-01-18 21:58:06 +08:00 committed by liunux4odoo
parent cce2b55719
commit 61abd98409
13 changed files with 989 additions and 352 deletions

View File

@ -10,9 +10,9 @@ publish_server:
port: 8001
openai_plugins_folder:
- "/media/gpt4-pdf-chatbot-langchain/langchain-chatchat-archive/openai_plugins"
- "openai_plugins"
openai_plugins_load_folder:
- "/media/gpt4-pdf-chatbot-langchain/langchain-chatchat-archive/configs"
- "configs"
plugins:
@ -21,11 +21,11 @@ plugins:
- fastchat:
name: "fastchat"
logdir: "/media/gpt4-pdf-chatbot-langchain/langchain-chatchat-archive/logs"
logdir: "logs"
# LLM 运行设备。设为"auto"会自动检测,也可手动设定为"cuda","mps","cpu"其中之一。
llm_device: "auto"
model_names:
- "Qwen-1_8B-Chat"
- "chatglm3-6b"
run_controller:
host: "127.0.0.1"
port: 20001
@ -38,10 +38,6 @@ plugins:
host: "127.0.0.1"
port: 20002
device: "auto"
# False,'vllm',使用的推理加速框架,使用vllm如果出现HuggingFace通信问题参见doc/FAQ
# vllm对一些模型支持还不成熟暂时默认关闭
# fschat=0.2.33的代码有bug, 如需使用源码修改fastchat.server.vllm_worker
# 将103行中sampling_params = SamplingParams的参数stop=list(stop)修改为stop= [i for i in stop if i!=""]
infer_turbo: False
# model_worker多卡加载需要配置的参数
@ -90,11 +86,16 @@ plugins:
# 'num_gpus': 1
# 'engine_use_ray': False,
# 'disable_log_requests': False
- Qwen-1_8B:
- chatglm3-6b:
host: "127.0.0.1"
port: 20008
- chatglm3-6b: # 使用default中的IP和端口
device": "cuda"
device: "cuda"
port: 20009
- internlm2-chat-7b:
host: "127.0.0.1"
device: "cuda"
port: 20009
# 以下配置可以不用修改在model_config中设置启动的模型
- zhipu-api:
@ -197,104 +198,95 @@ plugins:
"secret_key": ""
"provider": "TianGongWorker"
"llm_model":
# 以下部分模型并未完全测试仅根据fastchat和vllm模型的模型列表推定支持
"chatglm2-6b": "THUDM/chatglm2-6b"
"chatglm2-6b-32k": "THUDM/chatglm2-6b-32k"
"chatglm3-6b": "THUDM/chatglm3-6b"
"chatglm3-6b": "/share/home/zyx/Models/chatglm3-6b"
"chatglm3-6b-32k": "THUDM/chatglm3-6b-32k"
"chatglm3-6b-base": "THUDM/chatglm3-6b-base"
"Qwen-1_8B": "/media/checkpoint/Qwen-1_8B"
"Llama-2-7b-chat-hf": "meta-llama/Llama-2-7b-chat-hf"
"Llama-2-13b-chat-hf": "meta-llama/Llama-2-13b-chat-hf"
"Llama-2-70b-chat-hf": "meta-llama/Llama-2-70b-chat-hf"
"Qwen-1_8B-Chat": "/media/checkpoint/Qwen-1_8B-Chat"
"Qwen-1_8B-Chat-Int8": "Qwen/Qwen-1_8B-Chat-Int8"
"Qwen-1_8B-Chat-Int4": "Qwen/Qwen-1_8B-Chat-Int4"
"Qwen-7B": "Qwen/Qwen-7B"
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat"
"Qwen-14B": "Qwen/Qwen-14B"
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat"
"Qwen-14B-Chat-Int8": "Qwen/Qwen-14B-Chat-Int8"
# 在新版的transformers下需要手动修改模型的config.json文件在quantization_config字典中
# 增加`disable_exllama:true` 字段才能启动qwen的量化模型
"Qwen-14B-Chat-Int4": "Qwen/Qwen-14B-Chat-Int4"
"Qwen-72B": "Qwen/Qwen-72B"
"Qwen-72B-Chat": "Qwen/Qwen-72B-Chat"
"Qwen-72B-Chat-Int8": "Qwen/Qwen-72B-Chat-Int8"
"Qwen-72B-Chat-Int4": "Qwen/Qwen-72B-Chat-Int4"
"baichuan2-13b": "baichuan-inc/Baichuan2-13B-Chat"
"baichuan2-7b": "baichuan-inc/Baichuan2-7B-Chat"
"baichuan-7b": "baichuan-inc/Baichuan-7B"
"baichuan-13b": "baichuan-inc/Baichuan-13B"
"baichuan-7b-chat": "baichuan-inc/Baichuan-7B-Chat"
"baichuan-13b-chat": "baichuan-inc/Baichuan-13B-Chat"
"aquila-7b": "BAAI/Aquila-7B"
"aquilachat-7b": "BAAI/AquilaChat-7B"
"baichuan2-7b-chat": "baichuan-inc/Baichuan2-7B-Chat"
"baichuan2-13b-chat": "baichuan-inc/Baichuan2-13B-Chat"
"internlm-7b": "internlm/internlm-7b"
"internlm-chat-7b": "internlm/internlm-chat-7b"
"falcon-7b": "tiiuae/falcon-7b"
"falcon-40b": "tiiuae/falcon-40b"
"falcon-rw-7b": "tiiuae/falcon-rw-7b"
"gpt2": "gpt2"
"gpt2-xl": "gpt2-xl"
"gpt-j-6b": "EleutherAI/gpt-j-6b"
"gpt4all-j": "nomic-ai/gpt4all-j"
"gpt-neox-20b": "EleutherAI/gpt-neox-20b"
"pythia-12b": "EleutherAI/pythia-12b"
"oasst-sft-4-pythia-12b-epoch-3.5": "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
"dolly-v2-12b": "databricks/dolly-v2-12b"
"stablelm-tuned-alpha-7b": "stabilityai/stablelm-tuned-alpha-7b"
"Llama-2-13b-hf": "meta-llama/Llama-2-13b-hf"
"Llama-2-70b-hf": "meta-llama/Llama-2-70b-hf"
"open_llama_13b": "openlm-research/open_llama_13b"
"vicuna-13b-v1.3": "lmsys/vicuna-13b-v1.3"
"koala": "young-geng/koala"
"mpt-7b": "mosaicml/mpt-7b"
"mpt-7b-storywriter": "mosaicml/mpt-7b-storywriter"
"mpt-30b": "mosaicml/mpt-30b"
"opt-66b": "facebook/opt-66b"
"opt-iml-max-30b": "facebook/opt-iml-max-30b"
"agentlm-7b": "THUDM/agentlm-7b"
"agentlm-13b": "THUDM/agentlm-13b"
"agentlm-70b": "THUDM/agentlm-70b"
"Yi-34B-Chat": "https://huggingface.co/01-ai/Yi-34B-Chat"
vllm_model_dict:
"aquila-7b": "BAAI/Aquila-7B"
"aquilachat-7b": "BAAI/AquilaChat-7B"
"baichuan-7b": "baichuan-inc/Baichuan-7B"
"baichuan-13b": "baichuan-inc/Baichuan-13B"
"baichuan-13b-chat": "baichuan-inc/Baichuan-13B-Chat"
"chatglm2-6b": "THUDM/chatglm2-6b"
"chatglm2-6b-32k": "THUDM/chatglm2-6b-32k"
"chatglm3-6b": "THUDM/chatglm3-6b"
"chatglm3-6b-32k": "THUDM/chatglm3-6b-32k"
"internlm2-chat-7b": "internlm/internlm2-chat-7b"
"internlm2-chat-20b": "internlm/internlm2-chat-20b"
"BlueLM-7B-Chat": "vivo-ai/BlueLM-7B-Chat"
"BlueLM-7B-Chat-32k": "vivo-ai/BlueLM-7B-Chat-32k"
# 注意bloom系列的tokenizer与model是分离的因此虽然vllm支持但与fschat框架不兼容
# "bloom": "bigscience/bloom",
# "bloomz": "bigscience/bloomz",
# "bloomz-560m": "bigscience/bloomz-560m",
# "bloomz-7b1": "bigscience/bloomz-7b1",
# "bloomz-1b7": "bigscience/bloomz-1b7",
"Yi-34B-Chat": "https://huggingface.co/01-ai/Yi-34B-Chat"
"agentlm-7b": "THUDM/agentlm-7b"
"agentlm-13b": "THUDM/agentlm-13b"
"agentlm-70b": "THUDM/agentlm-70b"
"falcon-7b": "tiiuae/falcon-7b"
"falcon-40b": "tiiuae/falcon-40b"
"falcon-rw-7b": "tiiuae/falcon-rw-7b"
"aquila-7b": "BAAI/Aquila-7B"
"aquilachat-7b": "BAAI/AquilaChat-7B"
"open_llama_13b": "openlm-research/open_llama_13b"
"vicuna-13b-v1.5": "lmsys/vicuna-13b-v1.5"
"koala": "young-geng/koala"
"mpt-7b": "mosaicml/mpt-7b"
"mpt-7b-storywriter": "mosaicml/mpt-7b-storywriter"
"mpt-30b": "mosaicml/mpt-30b"
"opt-66b": "facebook/opt-66b"
"opt-iml-max-30b": "facebook/opt-iml-max-30b"
"gpt2": "gpt2"
"gpt2-xl": "gpt2-xl"
"gpt-j-6b": "EleutherAI/gpt-j-6b"
"gpt4all-j": "nomic-ai/gpt4all-j"
"gpt-neox-20b": "EleutherAI/gpt-neox-20b"
"pythia-12b": "EleutherAI/pythia-12b"
"oasst-sft-4-pythia-12b-epoch-3.5": "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
"dolly-v2-12b": "databricks/dolly-v2-12b"
"stablelm-tuned-alpha-7b": "stabilityai/stablelm-tuned-alpha-7b"
vllm_model_dict:
"chatglm2-6b": "THUDM/chatglm2-6b"
"chatglm2-6b-32k": "THUDM/chatglm2-6b-32k"
"chatglm3-6b": "THUDM/chatglm3-6b"
"chatglm3-6b-32k": "THUDM/chatglm3-6b-32k"
"Llama-2-7b-chat-hf": "meta-llama/Llama-2-7b-chat-hf"
"Llama-2-13b-chat-hf": "meta-llama/Llama-2-13b-chat-hf"
"Llama-2-70b-chat-hf": "meta-llama/Llama-2-70b-chat-hf"
"Qwen-1_8B-Chat": "Qwen/Qwen-1_8B-Chat"
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat"
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat"
"Qwen-72B-Chat": "Qwen/Qwen-72B-Chat"
"baichuan-7b-chat": "baichuan-inc/Baichuan-7B-Chat"
"baichuan-13b-chat": "baichuan-inc/Baichuan-13B-Chat"
"baichuan2-7b-chat": "baichuan-inc/Baichuan-7B-Chat"
"baichuan2-13b-chat": "baichuan-inc/Baichuan-13B-Chat"
"BlueLM-7B-Chat": "vivo-ai/BlueLM-7B-Chat"
"BlueLM-7B-Chat-32k": "vivo-ai/BlueLM-7B-Chat-32k"
"internlm-7b": "internlm/internlm-7b"
"internlm-chat-7b": "internlm/internlm-chat-7b"
"internlm2-chat-7b": "internlm/Models/internlm2-chat-7b"
"internlm2-chat-20b": "internlm/Models/internlm2-chat-20b"
"aquila-7b": "BAAI/Aquila-7B"
"aquilachat-7b": "BAAI/AquilaChat-7B"
"falcon-7b": "tiiuae/falcon-7b"
"falcon-40b": "tiiuae/falcon-40b"
"falcon-rw-7b": "tiiuae/falcon-rw-7b"
@ -307,8 +299,6 @@ plugins:
"oasst-sft-4-pythia-12b-epoch-3.5": "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
"dolly-v2-12b": "databricks/dolly-v2-12b"
"stablelm-tuned-alpha-7b": "stabilityai/stablelm-tuned-alpha-7b"
"Llama-2-13b-hf": "meta-llama/Llama-2-13b-hf"
"Llama-2-70b-hf": "meta-llama/Llama-2-70b-hf"
"open_llama_13b": "openlm-research/open_llama_13b"
"vicuna-13b-v1.3": "lmsys/vicuna-13b-v1.3"
"koala": "young-geng/koala"
@ -318,24 +308,3 @@ plugins:
"opt-66b": "facebook/opt-66b"
"opt-iml-max-30b": "facebook/opt-iml-max-30b"
"Qwen-1_8B": "Qwen/Qwen-1_8B"
"Qwen-1_8B-Chat": "Qwen/Qwen-1_8B-Chat"
"Qwen-1_8B-Chat-Int8": "Qwen/Qwen-1_8B-Chat-Int8"
"Qwen-1_8B-Chat-Int4": "Qwen/Qwen-1_8B-Chat-Int4"
"Qwen-7B": "Qwen/Qwen-7B"
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat"
"Qwen-14B": "Qwen/Qwen-14B"
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat"
"Qwen-14B-Chat-Int8": "Qwen/Qwen-14B-Chat-Int8"
"Qwen-14B-Chat-Int4": "Qwen/Qwen-14B-Chat-Int4"
"Qwen-72B": "Qwen/Qwen-72B"
"Qwen-72B-Chat": "Qwen/Qwen-72B-Chat"
"Qwen-72B-Chat-Int8": "Qwen/Qwen-72B-Chat-Int8"
"Qwen-72B-Chat-Int4": "Qwen/Qwen-72B-Chat-Int4"
"agentlm-7b": "THUDM/agentlm-7b"
"agentlm-13b": "THUDM/agentlm-13b"
"agentlm-70b": "THUDM/agentlm-70b"

310
configs/loom.yaml.example Normal file
View File

@ -0,0 +1,310 @@
log_path: "logs"
log_level: "DEBUG"
api_server:
host: "127.0.0.1"
port: 8000
publish_server:
host: "127.0.0.1"
port: 8001
openai_plugins_folder:
- "openai_plugins"
openai_plugins_load_folder:
- "configs"
plugins:
- openai:
name: "openai"
- fastchat:
name: "fastchat"
logdir: "logs"
# LLM 运行设备。设为"auto"会自动检测,也可手动设定为"cuda","mps","cpu"其中之一。
llm_device: "auto"
model_names:
- "chatglm3-6b"
run_controller:
host: "127.0.0.1"
port: 20001
dispatch_method: "shortest_queue"
run_openai_api:
host: "127.0.0.1"
port: 20000
fschat_model_workers:
- default:
host: "127.0.0.1"
port: 20002
device: "auto"
infer_turbo: False
# model_worker多卡加载需要配置的参数
# "gpus": None, # 使用的GPU以str的格式指定如"0,1"如失效请使用CUDA_VISIBLE_DEVICES="0,1"等形式指定
# "num_gpus": 1, # 使用GPU的数量
# "max_gpu_memory": "20GiB", # 每个GPU占用的最大显存
# 以下为model_worker非常用参数可根据需要配置
# "load_8bit": False, # 开启8bit量化
# "cpu_offloading": None,
# "gptq_ckpt": None,
# "gptq_wbits": 16,
# "gptq_groupsize": -1,
# "gptq_act_order": False,
# "awq_ckpt": None,
# "awq_wbits": 16,
# "awq_groupsize": -1,
# "model_names": LLM_MODELS,
# "conv_template": None,
# "limit_worker_concurrency": 5,
# "stream_interval": 2,
# "no_register": False,
# "embed_in_truncate": False,
# 以下为vllm_worker配置参数,注意使用vllm必须有gpu仅在Linux测试通过
# tokenizer = model_path # 如果tokenizer与model_path不一致在此处添加
# 'tokenizer_mode':'auto',
# 'trust_remote_code':True,
# 'download_dir':None,
# 'load_format':'auto',
# 'dtype':'auto',
# 'seed':0,
# 'worker_use_ray':False,
# 'pipeline_parallel_size':1,
# 'tensor_parallel_size':1,
# 'block_size':16,
# 'swap_space':4 , # GiB
# 'gpu_memory_utilization':0.90,
# 'max_num_batched_tokens':2560,
# 'max_num_seqs':256,
# 'disable_log_stats':False,
# 'conv_template':None,
# 'limit_worker_concurrency':5,
# 'no_register':False,
# 'num_gpus': 1
# 'engine_use_ray': False,
# 'disable_log_requests': False
- chatglm3-6b:
host: "127.0.0.1"
device: "cuda"
port: 20009
- internlm2-chat-7b:
host: "127.0.0.1"
device: "cuda"
port: 20009
# 以下配置可以不用修改在model_config中设置启动的模型
- zhipu-api:
port: 21001
- minimax-api:
port: 21002
- xinghuo-api:
port: 21003
- qianfan-api:
port: 21004
- fangzhou-api:
port: 21005
- qwen-api:
port: 21006
- baichuan-api:
port: 21007
- azure-api:
port: 21008
- tiangong-api:
port: 21009
online_llm_model:
# 线上模型。请在server_config中为每个在线API设置不同的端口
- "openai-api":
"model_name": "gpt-3.5-turbo"
"api_base_url": "https://api.openai.com/v1"
"api_key": ""
"openai_proxy": ""
# 具体注册及api key获取请前往 http://open.bigmodel.cn
- "zhipu-api":
"api_key": ""
"version": "chatglm_turbo" # 可选包括 "chatglm_turbo"
"provider": "ChatGLMWorker"
# 具体注册及api key获取请前往 https://api.minimax.chat/
- "minimax-api":
"group_id": ""
"api_key": ""
"is_pro": False
"provider": "MiniMaxWorker"
# 具体注册及api key获取请前往 https://xinghuo.xfyun.cn/
- "xinghuo-api":
"APPID": ""
"APISecret": ""
"api_key": ""
"version": "v1.5" # 你使用的讯飞星火大模型版本,可选包括 "v3.0", "v1.5", "v2.0"
"provider": "XingHuoWorker"
# 百度千帆 API申请方式请参考 https://cloud.baidu.com/doc/WENXINWORKSHOP/s/4lilb2lpf
- "qianfan-api":
"version": "ERNIE-Bot" # 注意大小写。当前支持 "ERNIE-Bot" 或 "ERNIE-Bot-turbo" 更多的见官方文档。
"version_url": "" # 也可以不填写version直接填写在千帆申请模型发布的API地址
"api_key": ""
"secret_key": ""
"provider": "QianFanWorker"
# 火山方舟 API文档参考 https://www.volcengine.com/docs/82379
- "fangzhou-api":
"version": "chatglm-6b-model" # 当前支持 "chatglm-6b-model" 更多的见文档模型支持列表中方舟部分。
"version_url": "" # 可以不填写version直接填写在方舟申请模型发布的API地址
"api_key": ""
"secret_key": ""
"provider": "FangZhouWorker"
# 阿里云通义千问 API文档参考 https://help.aliyun.com/zh/dashscope/developer-reference/api-details
- "qwen-api":
"version": "qwen-turbo" # 可选包括 "qwen-turbo", "qwen-plus"
"api_key": "" # 请在阿里云控制台模型服务灵积API-KEY管理页面创建
"provider": "QwenWorker"
# 百川 API申请方式请参考 https://www.baichuan-ai.com/home#api-enter
- "baichuan-api":
"version": "Baichuan2-53B" # 当前支持 "Baichuan2-53B" 见官方文档。
"api_key": ""
"secret_key": ""
"provider": "BaiChuanWorker"
# Azure API
- "azure-api":
"deployment_name": "" # 部署容器的名字
"resource_name": "" # https://{resource_name}.openai.azure.com/openai/ 填写resource_name的部分其他部分不要填写
"api_version": "" # API的版本不是模型版本
"api_key": ""
"provider": "AzureWorker"
# 昆仑万维天工 API https://model-platform.tiangong.cn/
- "tiangong-api":
"version": "SkyChat-MegaVerse"
"api_key": ""
"secret_key": ""
"provider": "TianGongWorker"
"llm_model":
"chatglm2-6b": "THUDM/chatglm2-6b"
"chatglm2-6b-32k": "THUDM/chatglm2-6b-32k"
"chatglm3-6b": "THUDM/chatglm3-6b"
"chatglm3-6b-32k": "THUDM/chatglm3-6b-32k"
"Llama-2-7b-chat-hf": "meta-llama/Llama-2-7b-chat-hf"
"Llama-2-13b-chat-hf": "meta-llama/Llama-2-13b-chat-hf"
"Llama-2-70b-chat-hf": "meta-llama/Llama-2-70b-chat-hf"
"Qwen-1_8B-Chat": "/media/checkpoint/Qwen-1_8B-Chat"
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat"
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat"
"Qwen-72B-Chat": "Qwen/Qwen-72B-Chat"
"baichuan-7b-chat": "baichuan-inc/Baichuan-7B-Chat"
"baichuan-13b-chat": "baichuan-inc/Baichuan-13B-Chat"
"baichuan2-7b-chat": "baichuan-inc/Baichuan2-7B-Chat"
"baichuan2-13b-chat": "baichuan-inc/Baichuan2-13B-Chat"
"internlm-7b": "internlm/internlm-7b"
"internlm-chat-7b": "internlm/internlm-chat-7b"
"internlm2-chat-7b": "internlm/internlm2-chat-7b"
"internlm2-chat-20b": "internlm/internlm2-chat-20b"
"BlueLM-7B-Chat": "vivo-ai/BlueLM-7B-Chat"
"BlueLM-7B-Chat-32k": "vivo-ai/BlueLM-7B-Chat-32k"
"Yi-34B-Chat": "https://huggingface.co/01-ai/Yi-34B-Chat"
"agentlm-7b": "THUDM/agentlm-7b"
"agentlm-13b": "THUDM/agentlm-13b"
"agentlm-70b": "THUDM/agentlm-70b"
"falcon-7b": "tiiuae/falcon-7b"
"falcon-40b": "tiiuae/falcon-40b"
"falcon-rw-7b": "tiiuae/falcon-rw-7b"
"aquila-7b": "BAAI/Aquila-7B"
"aquilachat-7b": "BAAI/AquilaChat-7B"
"open_llama_13b": "openlm-research/open_llama_13b"
"vicuna-13b-v1.5": "lmsys/vicuna-13b-v1.5"
"koala": "young-geng/koala"
"mpt-7b": "mosaicml/mpt-7b"
"mpt-7b-storywriter": "mosaicml/mpt-7b-storywriter"
"mpt-30b": "mosaicml/mpt-30b"
"opt-66b": "facebook/opt-66b"
"opt-iml-max-30b": "facebook/opt-iml-max-30b"
"gpt2": "gpt2"
"gpt2-xl": "gpt2-xl"
"gpt-j-6b": "EleutherAI/gpt-j-6b"
"gpt4all-j": "nomic-ai/gpt4all-j"
"gpt-neox-20b": "EleutherAI/gpt-neox-20b"
"pythia-12b": "EleutherAI/pythia-12b"
"oasst-sft-4-pythia-12b-epoch-3.5": "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
"dolly-v2-12b": "databricks/dolly-v2-12b"
"stablelm-tuned-alpha-7b": "stabilityai/stablelm-tuned-alpha-7b"
vllm_model_dict:
"chatglm2-6b": "THUDM/chatglm2-6b"
"chatglm2-6b-32k": "THUDM/chatglm2-6b-32k"
"chatglm3-6b": "THUDM/chatglm3-6b"
"chatglm3-6b-32k": "THUDM/chatglm3-6b-32k"
"Llama-2-7b-chat-hf": "meta-llama/Llama-2-7b-chat-hf"
"Llama-2-13b-chat-hf": "meta-llama/Llama-2-13b-chat-hf"
"Llama-2-70b-chat-hf": "meta-llama/Llama-2-70b-chat-hf"
"Qwen-1_8B-Chat": "Qwen/Qwen-1_8B-Chat"
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat"
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat"
"Qwen-72B-Chat": "Qwen/Qwen-72B-Chat"
"baichuan-7b-chat": "baichuan-inc/Baichuan-7B-Chat"
"baichuan-13b-chat": "baichuan-inc/Baichuan-13B-Chat"
"baichuan2-7b-chat": "baichuan-inc/Baichuan-7B-Chat"
"baichuan2-13b-chat": "baichuan-inc/Baichuan-13B-Chat"
"BlueLM-7B-Chat": "vivo-ai/BlueLM-7B-Chat"
"BlueLM-7B-Chat-32k": "vivo-ai/BlueLM-7B-Chat-32k"
"internlm-7b": "internlm/internlm-7b"
"internlm-chat-7b": "internlm/internlm-chat-7b"
"internlm2-chat-7b": "internlm/Models/internlm2-chat-7b"
"internlm2-chat-20b": "internlm/Models/internlm2-chat-20b"
"aquila-7b": "BAAI/Aquila-7B"
"aquilachat-7b": "BAAI/AquilaChat-7B"
"falcon-7b": "tiiuae/falcon-7b"
"falcon-40b": "tiiuae/falcon-40b"
"falcon-rw-7b": "tiiuae/falcon-rw-7b"
"gpt2": "gpt2"
"gpt2-xl": "gpt2-xl"
"gpt-j-6b": "EleutherAI/gpt-j-6b"
"gpt4all-j": "nomic-ai/gpt4all-j"
"gpt-neox-20b": "EleutherAI/gpt-neox-20b"
"pythia-12b": "EleutherAI/pythia-12b"
"oasst-sft-4-pythia-12b-epoch-3.5": "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
"dolly-v2-12b": "databricks/dolly-v2-12b"
"stablelm-tuned-alpha-7b": "stabilityai/stablelm-tuned-alpha-7b"
"open_llama_13b": "openlm-research/open_llama_13b"
"vicuna-13b-v1.3": "lmsys/vicuna-13b-v1.3"
"koala": "young-geng/koala"
"mpt-7b": "mosaicml/mpt-7b"
"mpt-7b-storywriter": "mosaicml/mpt-7b-storywriter"
"mpt-30b": "mosaicml/mpt-30b"
"opt-66b": "facebook/opt-66b"
"opt-iml-max-30b": "facebook/opt-iml-max-30b"

View File

@ -1,253 +1,310 @@
import os
log_path: "logs"
log_level: "DEBUG"
MODEL_ROOT_PATH = ""
EMBEDDING_MODEL = "bge-large-zh-v1.5" # bge-large-zh
EMBEDDING_DEVICE = "auto"
api_server:
host: "127.0.0.1"
port: 8000
# 选用的reranker模型
RERANKER_MODEL = "bge-reranker-large"
# 是否启用reranker模型
USE_RERANKER = False
RERANKER_MAX_LENGTH = 1024
publish_server:
host: "127.0.0.1"
port: 8001
# 如果需要在 EMBEDDING_MODEL 中增加自定义的关键字时配置
EMBEDDING_KEYWORD_FILE = "keywords.txt"
EMBEDDING_MODEL_OUTPUT_PATH = "output"
openai_plugins_folder:
- "openai_plugins"
openai_plugins_load_folder:
- "configs"
SUPPORT_AGENT_MODELS = [
"chatglm3-6b",
"openai-api",
"Qwen-14B-Chat",
"Qwen-7B-Chat",
]
LLM_MODEL_CONFIG = {
"preprocess_model": {
# "Mixtral-8x7B-v0.1": {
# "temperature": 0.01,
# "max_tokens": 5,
# "prompt_name": "default",
# "callbacks": False
# },
"chatglm3-6b": {
"temperature": 0.05,
"max_tokens": 4096,
"prompt_name": "default",
"callbacks": False
},
},
"llm_model": {
# "Mixtral-8x7B-v0.1": {
# "temperature": 0.9,
# "max_tokens": 4000,
# "history_len": 5,
# "prompt_name": "default",
# "callbacks": True
# },
"chatglm3-6b": {
"temperature": 0.05,
"max_tokens": 4096,
"prompt_name": "default",
"history_len": 10,
"callbacks": True
},
},
"action_model": {
# "Qwen-14B-Chat": {
# "temperature": 0.05,
# "max_tokens": 4096,
# "prompt_name": "qwen",
# "callbacks": True
# },
"chatglm3-6b": {
"temperature": 0.05,
"max_tokens": 4096,
"prompt_name": "ChatGLM3",
"callbacks": True
},
# "zhipu-api": {
# "temperature": 0.01,
# "max_tokens": 4096,
# "prompt_name": "ChatGLM3",
# "callbacks": True
# }
},
"postprocess_model": {
"zhipu-api": {
"temperature": 0.01,
"max_tokens": 4096,
"prompt_name": "default",
"callbacks": True
}
},
}
LLM_DEVICE = "auto"
ONLINE_LLM_MODEL = {
"openai-api": {
"model_name": "gpt-4-1106-preview",
"api_base_url": "https://api.openai.com/v1",
"api_key": "sk-",
"openai_proxy": "",
},
"zhipu-api": {
"api_key": "",
"version": "chatglm_turbo",
"provider": "ChatGLMWorker",
},
"minimax-api": {
"group_id": "",
"api_key": "",
"is_pro": False,
"provider": "MiniMaxWorker",
},
"xinghuo-api": {
"APPID": "",
"APISecret": "",
"api_key": "",
"version": "v3.0",
"provider": "XingHuoWorker",
},
"qianfan-api": {
"version": "ernie-bot-4",
"version_url": "",
"api_key": "",
"secret_key": "",
"provider": "QianFanWorker",
},
"fangzhou-api": {
"version": "chatglm-6b-model",
"version_url": "",
"api_key": "",
"secret_key": "",
"provider": "FangZhouWorker",
},
"qwen-api": {
"version": "qwen-max",
"api_key": "",
"provider": "QwenWorker",
"embed_model": "text-embedding-v1" # embedding 模型名称
},
"baichuan-api": {
"version": "Baichuan2-53B",
"api_key": "",
"secret_key": "",
"provider": "BaiChuanWorker",
},
"azure-api": {
"deployment_name": "",
"resource_name": "",
"api_version": "2023-07-01-preview",
"api_key": "",
"provider": "AzureWorker",
},
plugins:
- openai:
name: "openai"
# 昆仑万维天工 API https://model-platform.tiangong.cn/
"tiangong-api": {
"version": "SkyChat-MegaVerse",
"api_key": "",
"secret_key": "",
"provider": "TianGongWorker",
},
# Gemini API https://makersuite.google.com/app/apikey
"gemini-api": {
"api_key": "",
"provider": "GeminiWorker",
}
- fastchat:
name: "fastchat"
logdir: "logs"
# LLM 运行设备。设为"auto"会自动检测,也可手动设定为"cuda","mps","cpu"其中之一。
llm_device: "auto"
model_names:
- "internlm2-chat-7b"
run_controller:
host: "127.0.0.1"
port: 20001
dispatch_method: "shortest_queue"
run_openai_api:
host: "127.0.0.1"
port: 20000
fschat_model_workers:
- default:
host: "127.0.0.1"
port: 20002
device: "auto"
infer_turbo: False
}
# model_worker多卡加载需要配置的参数
# "gpus": None, # 使用的GPU以str的格式指定如"0,1"如失效请使用CUDA_VISIBLE_DEVICES="0,1"等形式指定
# "num_gpus": 1, # 使用GPU的数量
# "max_gpu_memory": "20GiB", # 每个GPU占用的最大显存
# 在以下字典中修改属性值以指定本地embedding模型存储位置。支持3种设置方法
# 1、将对应的值修改为模型绝对路径
# 2、不修改此处的值以 text2vec 为例):
# 2.1 如果{MODEL_ROOT_PATH}下存在如下任一子目录:
# - text2vec
# - GanymedeNil/text2vec-large-chinese
# - text2vec-large-chinese
# 2.2 如果以上本地路径不存在则使用huggingface模型
# 以下为model_worker非常用参数可根据需要配置
# "load_8bit": False, # 开启8bit量化
# "cpu_offloading": None,
# "gptq_ckpt": None,
# "gptq_wbits": 16,
# "gptq_groupsize": -1,
# "gptq_act_order": False,
# "awq_ckpt": None,
# "awq_wbits": 16,
# "awq_groupsize": -1,
# "model_names": LLM_MODELS,
# "conv_template": None,
# "limit_worker_concurrency": 5,
# "stream_interval": 2,
# "no_register": False,
# "embed_in_truncate": False,
MODEL_PATH = {
"embed_model": {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
"text2vec-base": "shibing624/text2vec-base-chinese",
"text2vec": "GanymedeNil/text2vec-large-chinese",
"text2vec-paraphrase": "shibing624/text2vec-base-chinese-paraphrase",
"text2vec-sentence": "shibing624/text2vec-base-chinese-sentence",
"text2vec-multilingual": "shibing624/text2vec-base-multilingual",
"text2vec-bge-large-chinese": "shibing624/text2vec-bge-large-chinese",
"m3e-small": "moka-ai/m3e-small",
"m3e-base": "moka-ai/m3e-base",
"m3e-large": "moka-ai/m3e-large",
# 以下为vllm_worker配置参数,注意使用vllm必须有gpu仅在Linux测试通过
"bge-small-zh": "BAAI/bge-small-zh",
"bge-base-zh": "BAAI/bge-base-zh",
"bge-large-zh": "/media/zr/Data/Models/Embedding/bge-large-zh",
"bge-large-zh-noinstruct": "BAAI/bge-large-zh-noinstruct",
"bge-base-zh-v1.5": "BAAI/bge-base-zh-v1.5",
"bge-large-zh-v1.5": "/share/home/zyx/Models/bge-large-zh-v1.5",
"piccolo-base-zh": "sensenova/piccolo-base-zh",
"piccolo-large-zh": "sensenova/piccolo-large-zh",
"nlp_gte_sentence-embedding_chinese-large": "/Models/nlp_gte_sentence-embedding_chinese-large",
"text-embedding-ada-002": "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",
}
}
# tokenizer = model_path # 如果tokenizer与model_path不一致在此处添加
# 'tokenizer_mode':'auto',
# 'trust_remote_code':True,
# 'download_dir':None,
# 'load_format':'auto',
# 'dtype':'auto',
# 'seed':0,
# 'worker_use_ray':False,
# 'pipeline_parallel_size':1,
# 'tensor_parallel_size':1,
# 'block_size':16,
# 'swap_space':4 , # GiB
# 'gpu_memory_utilization':0.90,
# 'max_num_batched_tokens':2560,
# 'max_num_seqs':256,
# 'disable_log_stats':False,
# 'conv_template':None,
# 'limit_worker_concurrency':5,
# 'no_register':False,
# 'num_gpus': 1
# 'engine_use_ray': False,
# 'disable_log_requests': False
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
- chatglm3-6b:
host: "127.0.0.1"
device: "cuda"
port: 20009
# 使用VLLM可能导致模型推理能力下降无法完成Agent任务
VLLM_MODEL_DICT = {
"aquila-7b": "BAAI/Aquila-7B",
"aquilachat-7b": "BAAI/AquilaChat-7B",
- internlm2-chat-7b:
host: "127.0.0.1"
device: "cuda"
port: 20009
"baichuan-7b": "baichuan-inc/Baichuan-7B",
"baichuan-13b": "baichuan-inc/Baichuan-13B",
'baichuan-13b-chat': 'baichuan-inc/Baichuan-13B-Chat',
# 以下配置可以不用修改在model_config中设置启动的模型
- zhipu-api:
port: 21001
'chatglm2-6b': 'THUDM/chatglm2-6b',
'chatglm2-6b-32k': 'THUDM/chatglm2-6b-32k',
'chatglm3-6b': 'THUDM/chatglm3-6b',
'chatglm3-6b-32k': 'THUDM/chatglm3-6b-32k',
- minimax-api:
port: 21002
"internlm-7b": "internlm/internlm-7b",
"internlm-chat-7b": "internlm/internlm-chat-7b",
"internlm2-chat-7b": "internlm/Models/internlm2-chat-7b",
"internlm2-chat-20b": "internlm/Models/internlm2-chat-20b",
- xinghuo-api:
port: 21003
"aquila-7b": "BAAI/Aquila-7B",
"aquilachat-7b": "BAAI/AquilaChat-7B",
- qianfan-api:
port: 21004
"falcon-7b": "tiiuae/falcon-7b",
"falcon-40b": "tiiuae/falcon-40b",
"falcon-rw-7b": "tiiuae/falcon-rw-7b",
"gpt2": "gpt2",
"gpt2-xl": "gpt2-xl",
"gpt-j-6b": "EleutherAI/gpt-j-6b",
"gpt4all-j": "nomic-ai/gpt4all-j",
"gpt-neox-20b": "EleutherAI/gpt-neox-20b",
"pythia-12b": "EleutherAI/pythia-12b",
"oasst-sft-4-pythia-12b-epoch-3.5": "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
"dolly-v2-12b": "databricks/dolly-v2-12b",
"stablelm-tuned-alpha-7b": "stabilityai/stablelm-tuned-alpha-7b",
"open_llama_13b": "openlm-research/open_llama_13b",
"vicuna-13b-v1.3": "lmsys/vicuna-13b-v1.3",
"koala": "young-geng/koala",
"mpt-7b": "mosaicml/mpt-7b",
"mpt-7b-storywriter": "mosaicml/mpt-7b-storywriter",
"mpt-30b": "mosaicml/mpt-30b",
"opt-66b": "facebook/opt-66b",
"opt-iml-max-30b": "facebook/opt-iml-max-30b",
- fangzhou-api:
port: 21005
"Qwen-7B": "Qwen/Qwen-7B",
"Qwen-14B": "Qwen/Qwen-14B",
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat",
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat",
- qwen-api:
port: 21006
"agentlm-7b": "THUDM/agentlm-7b",
"agentlm-13b": "THUDM/agentlm-13b",
"agentlm-70b": "THUDM/agentlm-70b",
- baichuan-api:
port: 21007
}
- azure-api:
port: 21008
- tiangong-api:
port: 21009
online_llm_model:
# 线上模型。请在server_config中为每个在线API设置不同的端口
- "openai-api":
"model_name": "gpt-3.5-turbo"
"api_base_url": "https://api.openai.com/v1"
"api_key": ""
"openai_proxy": ""
# 具体注册及api key获取请前往 http://open.bigmodel.cn
- "zhipu-api":
"api_key": ""
"version": "chatglm_turbo" # 可选包括 "chatglm_turbo"
"provider": "ChatGLMWorker"
# 具体注册及api key获取请前往 https://api.minimax.chat/
- "minimax-api":
"group_id": ""
"api_key": ""
"is_pro": False
"provider": "MiniMaxWorker"
# 具体注册及api key获取请前往 https://xinghuo.xfyun.cn/
- "xinghuo-api":
"APPID": ""
"APISecret": ""
"api_key": ""
"version": "v1.5" # 你使用的讯飞星火大模型版本,可选包括 "v3.0", "v1.5", "v2.0"
"provider": "XingHuoWorker"
# 百度千帆 API申请方式请参考 https://cloud.baidu.com/doc/WENXINWORKSHOP/s/4lilb2lpf
- "qianfan-api":
"version": "ERNIE-Bot" # 注意大小写。当前支持 "ERNIE-Bot" 或 "ERNIE-Bot-turbo" 更多的见官方文档。
"version_url": "" # 也可以不填写version直接填写在千帆申请模型发布的API地址
"api_key": ""
"secret_key": ""
"provider": "QianFanWorker"
# 火山方舟 API文档参考 https://www.volcengine.com/docs/82379
- "fangzhou-api":
"version": "chatglm-6b-model" # 当前支持 "chatglm-6b-model" 更多的见文档模型支持列表中方舟部分。
"version_url": "" # 可以不填写version直接填写在方舟申请模型发布的API地址
"api_key": ""
"secret_key": ""
"provider": "FangZhouWorker"
# 阿里云通义千问 API文档参考 https://help.aliyun.com/zh/dashscope/developer-reference/api-details
- "qwen-api":
"version": "qwen-turbo" # 可选包括 "qwen-turbo", "qwen-plus"
"api_key": "" # 请在阿里云控制台模型服务灵积API-KEY管理页面创建
"provider": "QwenWorker"
# 百川 API申请方式请参考 https://www.baichuan-ai.com/home#api-enter
- "baichuan-api":
"version": "Baichuan2-53B" # 当前支持 "Baichuan2-53B" 见官方文档。
"api_key": ""
"secret_key": ""
"provider": "BaiChuanWorker"
# Azure API
- "azure-api":
"deployment_name": "" # 部署容器的名字
"resource_name": "" # https://{resource_name}.openai.azure.com/openai/ 填写resource_name的部分其他部分不要填写
"api_version": "" # API的版本不是模型版本
"api_key": ""
"provider": "AzureWorker"
# 昆仑万维天工 API https://model-platform.tiangong.cn/
- "tiangong-api":
"version": "SkyChat-MegaVerse"
"api_key": ""
"secret_key": ""
"provider": "TianGongWorker"
"llm_model":
"chatglm2-6b": "THUDM/chatglm2-6b"
"chatglm2-6b-32k": "THUDM/chatglm2-6b-32k"
"chatglm3-6b": "THUDM/chatglm3-6b"
"chatglm3-6b-32k": "THUDM/chatglm3-6b-32k"
"Llama-2-7b-chat-hf": "meta-llama/Llama-2-7b-chat-hf"
"Llama-2-13b-chat-hf": "meta-llama/Llama-2-13b-chat-hf"
"Llama-2-70b-chat-hf": "meta-llama/Llama-2-70b-chat-hf"
"Qwen-1_8B-Chat": "/media/checkpoint/Qwen-1_8B-Chat"
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat"
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat"
"Qwen-72B-Chat": "Qwen/Qwen-72B-Chat"
"baichuan-7b-chat": "baichuan-inc/Baichuan-7B-Chat"
"baichuan-13b-chat": "baichuan-inc/Baichuan-13B-Chat"
"baichuan2-7b-chat": "baichuan-inc/Baichuan2-7B-Chat"
"baichuan2-13b-chat": "baichuan-inc/Baichuan2-13B-Chat"
"internlm-7b": "internlm/internlm-7b"
"internlm-chat-7b": "internlm/internlm-chat-7b"
"internlm2-chat-7b": "internlm/internlm2-chat-7b"
"internlm2-chat-20b": "internlm/internlm2-chat-20b"
"BlueLM-7B-Chat": "vivo-ai/BlueLM-7B-Chat"
"BlueLM-7B-Chat-32k": "vivo-ai/BlueLM-7B-Chat-32k"
"Yi-34B-Chat": "https://huggingface.co/01-ai/Yi-34B-Chat"
"agentlm-7b": "THUDM/agentlm-7b"
"agentlm-13b": "THUDM/agentlm-13b"
"agentlm-70b": "THUDM/agentlm-70b"
"falcon-7b": "tiiuae/falcon-7b"
"falcon-40b": "tiiuae/falcon-40b"
"falcon-rw-7b": "tiiuae/falcon-rw-7b"
"aquila-7b": "BAAI/Aquila-7B"
"aquilachat-7b": "BAAI/AquilaChat-7B"
"open_llama_13b": "openlm-research/open_llama_13b"
"vicuna-13b-v1.5": "lmsys/vicuna-13b-v1.5"
"koala": "young-geng/koala"
"mpt-7b": "mosaicml/mpt-7b"
"mpt-7b-storywriter": "mosaicml/mpt-7b-storywriter"
"mpt-30b": "mosaicml/mpt-30b"
"opt-66b": "facebook/opt-66b"
"opt-iml-max-30b": "facebook/opt-iml-max-30b"
"gpt2": "gpt2"
"gpt2-xl": "gpt2-xl"
"gpt-j-6b": "EleutherAI/gpt-j-6b"
"gpt4all-j": "nomic-ai/gpt4all-j"
"gpt-neox-20b": "EleutherAI/gpt-neox-20b"
"pythia-12b": "EleutherAI/pythia-12b"
"oasst-sft-4-pythia-12b-epoch-3.5": "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
"dolly-v2-12b": "databricks/dolly-v2-12b"
"stablelm-tuned-alpha-7b": "stabilityai/stablelm-tuned-alpha-7b"
vllm_model_dict:
"chatglm2-6b": "THUDM/chatglm2-6b"
"chatglm2-6b-32k": "THUDM/chatglm2-6b-32k"
"chatglm3-6b": "THUDM/chatglm3-6b"
"chatglm3-6b-32k": "THUDM/chatglm3-6b-32k"
"Llama-2-7b-chat-hf": "meta-llama/Llama-2-7b-chat-hf"
"Llama-2-13b-chat-hf": "meta-llama/Llama-2-13b-chat-hf"
"Llama-2-70b-chat-hf": "meta-llama/Llama-2-70b-chat-hf"
"Qwen-1_8B-Chat": "Qwen/Qwen-1_8B-Chat"
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat"
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat"
"Qwen-72B-Chat": "Qwen/Qwen-72B-Chat"
"baichuan-7b-chat": "baichuan-inc/Baichuan-7B-Chat"
"baichuan-13b-chat": "baichuan-inc/Baichuan-13B-Chat"
"baichuan2-7b-chat": "baichuan-inc/Baichuan-7B-Chat"
"baichuan2-13b-chat": "baichuan-inc/Baichuan-13B-Chat"
"BlueLM-7B-Chat": "vivo-ai/BlueLM-7B-Chat"
"BlueLM-7B-Chat-32k": "vivo-ai/BlueLM-7B-Chat-32k"
"internlm-7b": "internlm/internlm-7b"
"internlm-chat-7b": "internlm/internlm-chat-7b"
"internlm2-chat-7b": "internlm/Models/internlm2-chat-7b"
"internlm2-chat-20b": "internlm/Models/internlm2-chat-20b"
"aquila-7b": "BAAI/Aquila-7B"
"aquilachat-7b": "BAAI/AquilaChat-7B"
"falcon-7b": "tiiuae/falcon-7b"
"falcon-40b": "tiiuae/falcon-40b"
"falcon-rw-7b": "tiiuae/falcon-rw-7b"
"gpt2": "gpt2"
"gpt2-xl": "gpt2-xl"
"gpt-j-6b": "EleutherAI/gpt-j-6b"
"gpt4all-j": "nomic-ai/gpt4all-j"
"gpt-neox-20b": "EleutherAI/gpt-neox-20b"
"pythia-12b": "EleutherAI/pythia-12b"
"oasst-sft-4-pythia-12b-epoch-3.5": "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
"dolly-v2-12b": "databricks/dolly-v2-12b"
"stablelm-tuned-alpha-7b": "stabilityai/stablelm-tuned-alpha-7b"
"open_llama_13b": "openlm-research/open_llama_13b"
"vicuna-13b-v1.3": "lmsys/vicuna-13b-v1.3"
"koala": "young-geng/koala"
"mpt-7b": "mosaicml/mpt-7b"
"mpt-7b-storywriter": "mosaicml/mpt-7b-storywriter"
"mpt-30b": "mosaicml/mpt-30b"
"opt-66b": "facebook/opt-66b"
"opt-iml-max-30b": "facebook/opt-iml-max-30b"
LOOM_CONFIG = "/media/gpt4-pdf-chatbot-langchain/LooM/src/core/loom.yaml"
OPENAI_KEY = None
OPENAI_PROXY = None

View File

@ -6,7 +6,6 @@ import sys
import logging
logger = logging.getLogger(__name__)
# 为了能使用插件中的函数需要将当前目录加入到sys.path中
root_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(root_dir)

View File

@ -0,0 +1 @@
openai>=1.7.1

View File

@ -0,0 +1,48 @@
from loom_core.openai_plugins.core.adapter import ProcessesInfo
from loom_core.openai_plugins.core.application import ApplicationAdapter
import os
import sys
import logging
logger = logging.getLogger(__name__)
root_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(root_dir)
class ZhipuAIApplicationAdapter(ApplicationAdapter):
def __init__(self, cfg=None, state_dict: dict = None):
self.processesInfo = None
self._cfg = cfg
super().__init__(state_dict=state_dict)
def class_name(self) -> str:
"""Get class name."""
return self.__name__
@classmethod
def from_config(cls, cfg=None):
_state_dict = {
"application_name": "zhipuai",
"application_version": "0.0.1",
"application_description": "zhipuai application",
"application_author": "zhipuai"
}
state_dict = cfg.get("state_dict", {})
if state_dict is not None and _state_dict is not None:
_state_dict = {**state_dict, **_state_dict}
else:
# 处理其中一个或两者都为 None 的情况
_state_dict = state_dict or _state_dict or {}
return cls(cfg=cfg, state_dict=_state_dict)
def init_processes(self, processesInfo: ProcessesInfo):
self.processesInfo = processesInfo
def start(self):
pass
def stop(self):
pass

View File

@ -0,0 +1,47 @@
from loom_core.openai_plugins.core.control import ControlAdapter
import os
import sys
import logging
logger = logging.getLogger(__name__)
# 为了能使用插件中的函数需要将当前目录加入到sys.path中
root_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(root_dir)
class ZhipuAIControlAdapter(ControlAdapter):
def __init__(self, cfg=None, state_dict: dict = None):
self._cfg = cfg
super().__init__(state_dict=state_dict)
def class_name(self) -> str:
"""Get class name."""
return self.__name__
def start_model(self, new_model_name):
pass
def stop_model(self, model_name: str):
pass
def replace_model(self, model_name: str, new_model_name: str):
pass
@classmethod
def from_config(cls, cfg=None):
_state_dict = {
"controller_name": "zhipuai",
"controller_version": "0.0.1",
"controller_description": "zhipuai controller",
"controller_author": "zhipuai"
}
state_dict = cfg.get("state_dict", {})
if state_dict is not None and _state_dict is not None:
_state_dict = {**state_dict, **_state_dict}
else:
# 处理其中一个或两者都为 None 的情况
_state_dict = state_dict or _state_dict or {}
return cls(cfg=cfg, state_dict=_state_dict)

View File

@ -0,0 +1,103 @@
import logging
import sys
import os
import subprocess
import threading
import re
import locale
logger = logging.getLogger(__name__)
root_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(root_dir)
# Perform install
processed_install = set()
pip_list = None
def handle_stream(stream, prefix):
stream.reconfigure(encoding=locale.getpreferredencoding(), errors='replace')
for msg in stream:
if prefix == '[!]' and ('it/s]' in msg or 's/it]' in msg) and ('%|' in msg or 'it [' in msg):
if msg.startswith('100%'):
print('\r' + msg, end="", file=sys.stderr),
else:
print('\r' + msg[:-1], end="", file=sys.stderr),
else:
if prefix == '[!]':
print(prefix, msg, end="", file=sys.stderr)
else:
print(prefix, msg, end="")
def get_installed_packages():
global pip_list
if pip_list is None:
try:
result = subprocess.check_output([sys.executable, '-m', 'pip', 'list'], universal_newlines=True)
pip_list = set([line.split()[0].lower() for line in result.split('\n') if line.strip()])
except subprocess.CalledProcessError as e:
print(f"[ComfyUI-Manager] Failed to retrieve the information of installed pip packages.")
return set()
return pip_list
def is_installed(name):
name = name.strip()
if name.startswith('#'):
return True
pattern = r'([^<>!=]+)([<>!=]=?)'
match = re.search(pattern, name)
if match:
name = match.group(1)
return name.lower() in get_installed_packages()
def process_wrap(cmd_str, cwd_path, handler=None):
process = subprocess.Popen(cmd_str, cwd=cwd_path, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True,
bufsize=1)
if handler is None:
handler = handle_stream
stdout_thread = threading.Thread(target=handler, args=(process.stdout, ""))
stderr_thread = threading.Thread(target=handler, args=(process.stderr, "[!]"))
stdout_thread.start()
stderr_thread.start()
stdout_thread.join()
stderr_thread.join()
return process.wait()
def install():
try:
requirements_path = os.path.join(root_dir, 'requirements.txt')
this_exit_code = 0
if os.path.exists(requirements_path):
with open(requirements_path, 'r', encoding="UTF-8") as file:
for line in file:
package_name = line.strip()
if package_name and not is_installed(package_name):
install_cmd = [sys.executable, "-m", "pip", "install", package_name]
this_exit_code += process_wrap(install_cmd, root_dir)
if this_exit_code != 0:
logger.info(f"[openai_plugins] Restoring fastchat is failed.")
except Exception as e:
logger.error(f"[openai_plugins] Restoring fastchat is failed.", exc_info=True)
if __name__ == "__main__":
install()

View File

@ -0,0 +1,96 @@
from typing import List
from loom_core.openai_plugins.core.adapter import LLMWorkerInfo
from loom_core.openai_plugins.core.profile_endpoint.core import ProfileEndpointAdapter
import os
import sys
import logging
logger = logging.getLogger(__name__)
root_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(root_dir)
class ZhipuAIProfileEndpointAdapter(ProfileEndpointAdapter):
"""Adapter for the profile endpoint."""
def __init__(self, cfg=None, state_dict: dict = None):
self._cfg = cfg
super().__init__(state_dict=state_dict)
def class_name(self) -> str:
"""Get class name."""
return self.__name__
def list_running_models(self) -> List[LLMWorkerInfo]:
"""模型列表及其配置项"""
list_worker = []
list_worker.append(LLMWorkerInfo(worker_id="glm-4",
model_name="glm-4",
model_description="glm-4",
providers=["model", "embedding"],
model_extra_info="{}"))
list_worker.append(LLMWorkerInfo(worker_id="glm-3-turbo",
model_name="glm-3-turbo",
model_description="glm-3-turbo",
providers=["model", "embedding"],
model_extra_info="{}"))
list_worker.append(LLMWorkerInfo(worker_id="embedding-2",
model_name="embedding-2",
model_description="embedding-2",
providers=["embedding"],
model_extra_info="{}"))
return list_worker
def list_llm_models(self) -> List[LLMWorkerInfo]:
"""获取已配置模型列表"""
list_worker = []
list_worker.append(LLMWorkerInfo(worker_id="glm-4",
model_name="glm-4",
model_description="glm-4",
providers=["model", "embedding"],
model_extra_info="{}"))
list_worker.append(LLMWorkerInfo(worker_id="glm-3-turbo",
model_name="glm-3-turbo",
model_description="glm-3-turbo",
providers=["model", "embedding"],
model_extra_info="{}"))
list_worker.append(LLMWorkerInfo(worker_id="embedding-2",
model_name="embedding-2",
model_description="embedding-2",
providers=["embedding"],
model_extra_info="{}"))
return list_worker
def get_model_config(self, model_name) -> LLMWorkerInfo:
'''
获取LLM模型配置项合并后的
'''
info_obj = LLMWorkerInfo(worker_id=model_name,
model_name=model_name,
model_description="",
providers=["model", "embedding"],
model_extra_info="{}")
return info_obj
@classmethod
def from_config(cls, cfg=None):
_state_dict = {
"profile_name": "zhipuai",
"profile_version": "0.0.1",
"profile_description": "zhipuai profile endpoint",
"profile_author": "zhipuai"
}
state_dict = cfg.get("state_dict", {})
if state_dict is not None and _state_dict is not None:
_state_dict = {**state_dict, **_state_dict}
else:
# 处理其中一个或两者都为 None 的情况
_state_dict = state_dict or _state_dict or {}
return cls(cfg=cfg, state_dict=_state_dict)

View File

@ -0,0 +1 @@
zhipuai>=2.0.1

View File

@ -0,0 +1,11 @@
{
"plugins_name": "zhipuai",
"endpoint_host": "https://open.bigmodel.cn/api/paas/v4/",
"install_file": "install.py",
"application_file": "app.py",
"application_class": "ZhipuAIApplicationAdapter",
"endpoint_controller_file": "controller.py",
"endpoint_controller_class": "ZhipuAIControlAdapter",
"profile_endpoint_file": "profile_endpoint.py",
"profile_endpoint_class": "ZhipuAIProfileEndpointAdapter"
}

View File

@ -345,8 +345,6 @@ def dialogue_page(api: ApiRequest, is_lite: bool = False):
st.rerun()
warning_placeholder = st.empty()
with warning_placeholder.container():
st.warning('Running in 8 x A100')
export_btn.download_button(
"导出记录",

View File

@ -69,7 +69,4 @@ def openai_plugins_page(api: ApiRequest, is_lite: bool = None):
st.button("启动" + st.session_state.worker_id, key="start_worker",
on_click=start_worker)
st.button("停止" + st.session_state.worker_id, key="stop_worker",
on_click=stop_worker)
on_click=stop_worker)