feature:长文档循环处理texts时,增加重试极致,降低单片文档失败导致整个文档向量化失败的概率

This commit is contained in:
hxb 2024-04-28 16:14:31 +08:00
parent 0078cdc724
commit 26672ffeda

View File

@ -1,6 +1,7 @@
from contextlib import contextmanager
import httpx
import requests
from fastchat.conversation import Conversation
from httpx_sse import EventSource
@ -44,7 +45,7 @@ class ChatGLMWorker(ApiModelWorker):
def __init__(
self,
*,
model_names: List[str] = ["zhipu-api"],
model_names: List[str] = ("zhipu-api",),
controller_addr: str = None,
worker_addr: str = None,
version: Literal["glm-4"] = "glm-4",
@ -87,28 +88,45 @@ class ChatGLMWorker(ApiModelWorker):
def do_embeddings(self, params: ApiEmbeddingsParams) -> Dict:
embed_model = params.embed_model or self.DEFAULT_EMBED_MODEL
params.load_config(self.model_names[0])
token = generate_token(params.api_key, 60)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {token}"
}
i = 0
batch_size = 1
result = []
while i < len(params.texts):
token = generate_token(params.api_key, 60)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {token}"
}
data = {
"model": params.embed_model or self.DEFAULT_EMBED_MODEL,
"model": embed_model,
"input": "".join(params.texts[i: i + batch_size])
}
embedding_data = self.request_embedding_api(headers, data, 1)
if embedding_data:
result.append(embedding_data)
i += batch_size
print(f"请求{embed_model}接口处理第{i}块文本返回embeddings: \n{embedding_data}")
return {"code": 200, "data": result}
# 请求接口,支持重试
def request_embedding_api(self, headers, data, retry=0):
response = ''
try:
url = "https://open.bigmodel.cn/api/paas/v4/embeddings"
response = requests.post(url, headers=headers, json=data)
ans = response.json()
result.append(ans["data"][0]["embedding"])
i += batch_size
return ans["data"][0]["embedding"]
except Exception as e:
print(f"request_embedding_api error={e} \nresponse={response}")
if retry > 0:
return self.request_embedding_api(headers, data, retry - 1)
else:
return None
return {"code": 200, "data": result}
def get_embeddings(self, params):
print("embedding")
print(params)