mirror of
https://github.com/RYDE-WORK/Langchain-Chatchat.git
synced 2026-02-01 03:43:24 +08:00
bugfix: 使用向量计算方式METRIC_INNER_PRODUCT时启用normalize_L2会导致向量化失败
This commit is contained in:
parent
2c7feae7bb
commit
0078cdc724
@ -57,7 +57,7 @@ class _FaissPool(CachePool):
|
||||
) -> FAISS:
|
||||
embeddings = EmbeddingsFunAdapter(embed_model)
|
||||
doc = Document(page_content="init", metadata={})
|
||||
vector_store = FAISS.from_documents([doc], embeddings, normalize_L2=True,distance_strategy="METRIC_INNER_PRODUCT")
|
||||
vector_store = FAISS.from_documents([doc], embeddings, distance_strategy="METRIC_INNER_PRODUCT")
|
||||
ids = list(vector_store.docstore._dict.keys())
|
||||
vector_store.delete(ids)
|
||||
return vector_store
|
||||
@ -94,7 +94,7 @@ class KBFaissPool(_FaissPool):
|
||||
|
||||
if os.path.isfile(os.path.join(vs_path, "index.faiss")):
|
||||
embeddings = self.load_kb_embeddings(kb_name=kb_name, embed_device=embed_device, default_embed_model=embed_model)
|
||||
vector_store = FAISS.load_local(vs_path, embeddings, normalize_L2=True,distance_strategy="METRIC_INNER_PRODUCT")
|
||||
vector_store = FAISS.load_local(vs_path, embeddings, distance_strategy="METRIC_INNER_PRODUCT")
|
||||
elif create:
|
||||
# create an empty vector store
|
||||
if not os.path.exists(vs_path):
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user