Update index.html

This commit is contained in:
Baian Chen (Andrew) 2023-04-18 00:11:33 +08:00 committed by GitHub
parent e78b01b3f3
commit 2d49088f49
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -72,9 +72,7 @@
<table border="0"> <table border="0">
</tbody> </tbody>
<tr><td class="caption"> Introducing <a href="https://github.com/cambridgeltl/visual-med-alpaca"><strong>Visual Med-Alpaca</strong></a>, an open-source, parameter-efficient biomedical foundation model that can be integrated with medical &quot;visual experts&quot; for multimodal biomedical tasks. Built upon the <a href="https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/">LLaMa-7B</a> architecture (<a href="https://arxiv.org/abs/2302.13971">Touvron et al., 2023</a>), this model is trained using an instruction set curated collaboratively by GPT-3.5-Turbo and human experts. Leveraging a few hours of instruction-tuning and the inclusion of plug-and-play visual modules, Visual Med-Alpaca can perform a diverse range of tasks, from interpreting radiological images to addressing complex clinical inquiries. The model can be replicated with ease, necessitating only a single consumer GPU. </td></tr> <tr><td class="caption"> Introducing <a href="https://github.com/cambridgeltl/visual-med-alpaca"><strong>Visual Med-Alpaca</strong></a>, an open-source, parameter-efficient biomedical foundation model that can be integrated with medical &quot;visual experts&quot; for multimodal biomedical tasks. Built upon the <a href="https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/">LLaMa-7B</a> architecture (<a href="https://arxiv.org/abs/2302.13971">Touvron et al., 2023</a>), this model is trained using an instruction set curated collaboratively by GPT-3.5-Turbo and human experts. Leveraging a few hours of instruction-tuning and the inclusion of plug-and-play visual modules, Visual Med-Alpaca can perform a diverse range of tasks, from interpreting radiological images to addressing complex clinical inquiries. The model can be replicated with ease, necessitating only a single consumer GPU. </td></tr>
<br></br> <tr><td class="caption"><br> Refer to our <a href="https://github.com/cambridgeltl/visual-med-alpaca"><strong>Official Github Repo</strong></a> for code and data.</td></tr>
<br></br>
<tr><td class="caption"> Refer to our <a href="https://github.com/cambridgeltl/visual-med-alpaca"><strong>Official Github Repo</strong></a> for code and data.</td></tr>
</tbody></table> </tbody></table>
<br> <br>