/* pybind/pybind.h: Main header file of the C++11 python binding generator library Copyright (c) 2015 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #if defined(_MSC_VER) #pragma warning(push) #pragma warning(disable: 4127) // warning C4127: Conditional expression is constant #pragma warning(disable: 4800) // warning C4800: 'int': forcing value to bool 'true' or 'false' (performance warning) #pragma warning(disable: 4996) // warning C4996: The POSIX name for this item is deprecated. Instead, use the ISO C and C++ conformant name #pragma warning(disable: 4100) // warning C4100: Unreferenced formal parameter #pragma warning(disable: 4512) // warning C4512: Assignment operator was implicitly defined as deleted #endif #include NAMESPACE_BEGIN(pybind) /// Wraps an arbitrary C++ function/method/lambda function/.. into a callable Python object class cpp_function : public function { private: /// Chained list of function entries for overloading struct function_entry { PyObject * (*impl) (function_entry *, PyObject *, PyObject *); void *data; std::string signature, doc; bool is_constructor; return_value_policy policy; function_entry *next = nullptr; }; /// Picks a suitable return value converter from cast.h template using return_value_caster = detail::type_caster::value, detail::void_type, typename detail::decay::type>::type>; /// Picks a suitable argument value converter from cast.h template using arg_value_caster = detail::type_caster>; public: cpp_function() { } /// Vanilla function pointers template cpp_function(return_type (*f)(arg_type...), const char *name = nullptr, const char *doc = nullptr, return_value_policy policy = return_value_policy::automatic, const function &sibling = function(), bool is_method = false) { typedef arg_value_caster cast_in; typedef return_value_caster cast_out; auto impl = [](function_entry *entry, PyObject *pyArgs, PyObject *parent) -> PyObject * { cast_in args; if (!args.load(pyArgs, true)) return nullptr; auto f = (return_type (*) (arg_type...)) entry->data; return cast_out::cast(args.template call(f), entry->policy, parent); }; initialize(name, doc, cast_in::name() + std::string(" -> ") + cast_out::name(), sibling, is_method, policy, impl, (void *) f); } /// Delegating helper constructor to deal with lambda functions template cpp_function(func &&f, const char *name = nullptr, const char *doc = nullptr, return_value_policy policy = return_value_policy::automatic, const function &sibling = function(), bool is_method = false) { initialize(std::forward(f), name, doc, policy, sibling, is_method, (typename detail::remove_class::type::operator())>::type *) nullptr); } /// Class methods (non-const) template cpp_function( return_type (class_type::*f)(arg_type...), const char *name = nullptr, const char *doc = nullptr, return_value_policy policy = return_value_policy::automatic, const function &sibling = function(), bool is_method = false) { initialize([f](class_type *c, arg_type... args) -> return_type { return (c->*f)(args...); }, name, doc, policy, sibling, is_method, (return_type (*)(class_type *, arg_type ...)) nullptr); } /// Class methods (const) template cpp_function( return_type (class_type::*f)(arg_type...) const, const char *name = nullptr, const char *doc = nullptr, return_value_policy policy = return_value_policy::automatic, const function &sibling = function(), bool is_method = false) { initialize([f](const class_type *c, arg_type... args) -> return_type { return (c->*f)(args...); }, name, doc, policy, sibling, is_method, (return_type (*)(const class_type *, arg_type ...)) nullptr); } private: /// Functors, lambda functions, etc. template void initialize(func &&f, const char *name, const char *doc, return_value_policy policy, const function &sibling, bool is_method, return_type (*)(arg_type...)) { typedef arg_value_caster cast_in; typedef return_value_caster cast_out; struct capture { typename std::remove_reference::type f; }; void *ptr = new capture { std::forward(f) }; auto impl = [](function_entry *entry, PyObject *pyArgs, PyObject *parent) -> PyObject *{ cast_in args; if (!args.load(pyArgs, true)) return nullptr; func &f = ((capture *) entry->data)->f; return cast_out::cast(args.template call(f), entry->policy, parent); }; initialize(name, doc, cast_in::name() + std::string(" -> ") + cast_out::name(), sibling, is_method, policy, impl, ptr); } static PyObject *dispatcher(PyObject *self, PyObject *args, PyObject * /* kwargs */) { function_entry *overloads = (function_entry *) PyCapsule_GetPointer(self, nullptr); PyObject *result = nullptr; PyObject *parent = PyTuple_Size(args) > 0 ? PyTuple_GetItem(args, 0) : nullptr; try { for (function_entry *it = overloads; it != nullptr; it = it->next) { if ((result = it->impl(it, args, parent)) != nullptr) break; } } catch (const error_already_set &) { return nullptr; } catch (const index_error &e) { PyErr_SetString(PyExc_IndexError, e.what()); return nullptr; } catch (const stop_iteration &e) { PyErr_SetString(PyExc_StopIteration, e.what()); return nullptr; } catch (const std::exception &e) { PyErr_SetString(PyExc_RuntimeError, e.what()); return nullptr; } catch (...) { PyErr_SetString(PyExc_RuntimeError, "Caught an unknown exception!"); return nullptr; } if (result) { if (overloads->is_constructor) { PyObject *inst = PyTuple_GetItem(args, 0); const detail::type_info *type_info = capsule(PyObject_GetAttrString((PyObject *) Py_TYPE(inst), const_cast("__pybind__")), false); type_info->init_holder(inst); } return result; } else { std::string signatures = "Incompatible function arguments. The " "following argument types are supported:\n"; int ctr = 0; for (function_entry *it = overloads; it != nullptr; it = it->next) { signatures += " "+ std::to_string(++ctr) + ". "; signatures += it->signature; signatures += "\n"; } PyErr_SetString(PyExc_TypeError, signatures.c_str()); return nullptr; } } void initialize(const char *name, const char *doc, const std::string &signature, function sibling, bool is_method, return_value_policy policy, PyObject *(*impl) (function_entry *, PyObject *, PyObject *), void *data) { if (name == nullptr) name = ""; /* Linked list of function call handlers (for overloading) */ function_entry *entry = new function_entry(); entry->impl = impl; entry->is_constructor = !strcmp(name, "__init__"); entry->policy = policy; entry->signature = signature; entry->data = data; if (doc) entry->doc = doc; if (!sibling.ptr() || !PyCFunction_Check(sibling.ptr())) { PyMethodDef *def = new PyMethodDef(); memset(def, 0, sizeof(PyMethodDef)); def->ml_name = name != nullptr ? strdup(name) : name; def->ml_meth = reinterpret_cast(*dispatcher); def->ml_flags = METH_VARARGS | METH_KEYWORDS; capsule entry_capsule(entry); m_ptr = PyCFunction_New(def, entry_capsule.ptr()); if (!m_ptr) throw std::runtime_error("cpp_function::cpp_function(): Could not allocate function object"); } else { m_ptr = sibling.ptr(); inc_ref(); capsule entry_capsule(PyCFunction_GetSelf(m_ptr), true); function_entry *parent = (function_entry *) entry_capsule, *backup = parent; while (parent->next) parent = parent->next; parent->next = entry; entry = backup; } std::string signatures; int it = 0; while (entry) { /* Create pydoc entry */ if (sibling.ptr()) signatures += std::to_string(++it) + ". "; signatures += "Signature : " + std::string(entry->signature) + "\n"; if (!entry->doc.empty()) signatures += "\n" + std::string(entry->doc) + "\n"; if (entry->next) signatures += "\n"; entry = entry->next; } PyCFunctionObject *func = (PyCFunctionObject *) m_ptr; if (func->m_ml->ml_doc) std::free((char *) func->m_ml->ml_doc); func->m_ml->ml_doc = strdup(signatures.c_str()); if (is_method) { m_ptr = PyInstanceMethod_New(m_ptr); if (!m_ptr) throw std::runtime_error("cpp_function::cpp_function(): Could not allocate instance method object"); Py_DECREF(func); } } }; class cpp_method : public cpp_function { public: cpp_method () { } template cpp_method(func &&f, const char *name = nullptr, const char *doc = nullptr, return_value_policy policy = return_value_policy::automatic, function sibling = function()) : cpp_function(std::forward(f), name, doc, policy, sibling, true) {} }; class module : public object { public: PYBIND_OBJECT_DEFAULT(module, object, PyModule_Check) module(const char *name, const char *doc = nullptr) { PyModuleDef *def = new PyModuleDef(); memset(def, 0, sizeof(PyModuleDef)); def->m_name = name; def->m_doc = doc; def->m_size = -1; Py_INCREF(def); m_ptr = PyModule_Create(def); if (m_ptr == nullptr) throw std::runtime_error("Internal error in module::module()"); inc_ref(); } template module &def(const char *name, Func f, const char *doc = nullptr, return_value_policy policy = return_value_policy::automatic) { cpp_function func(f, name, doc, policy, (function) attr(name)); func.inc_ref(); /* The following line steals a reference to 'func' */ PyModule_AddObject(ptr(), name, func.ptr()); return *this; } module def_submodule(const char *name, const char *doc = nullptr) { std::string full_name = std::string(PyModule_GetName(m_ptr)) + std::string(".") + std::string(name); module result(PyImport_AddModule(full_name.c_str()), true); if (doc) result.attr("__doc__") = pybind::str(doc); attr(name) = result; return result; } }; NAMESPACE_BEGIN(detail) /* Forward declarations */ enum op_id : int; enum op_type : int; struct undefined_t; template struct op_; template struct init; /// Basic support for creating new Python heap types class custom_type : public object { public: PYBIND_OBJECT_DEFAULT(custom_type, object, PyType_Check) custom_type(object &scope, const char *name_, const std::string &type_name, size_t type_size, size_t instance_size, void (*init_holder)(PyObject *), const destructor &dealloc, PyObject *parent, const char *doc) { PyHeapTypeObject *type = (PyHeapTypeObject*) PyType_Type.tp_alloc(&PyType_Type, 0); PyObject *name = PyUnicode_FromString(name_); if (type == nullptr || name == nullptr) throw std::runtime_error("Internal error in custom_type::custom_type()"); Py_INCREF(name); std::string full_name(name_); pybind::str scope_name = (object) scope.attr("__name__"), module_name = (object) scope.attr("__module__"); if (scope_name.check()) full_name = std::string(scope_name) + "." + full_name; if (module_name.check()) full_name = std::string(module_name) + "." + full_name; type->ht_name = type->ht_qualname = name; type->ht_type.tp_name = strdup(full_name.c_str()); type->ht_type.tp_basicsize = instance_size; type->ht_type.tp_init = (initproc) init; type->ht_type.tp_new = (newfunc) new_instance; type->ht_type.tp_dealloc = dealloc; type->ht_type.tp_flags |= Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE; type->ht_type.tp_flags &= ~Py_TPFLAGS_HAVE_GC; type->ht_type.tp_as_number = &type->as_number; type->ht_type.tp_as_sequence = &type->as_sequence; type->ht_type.tp_as_mapping = &type->as_mapping; type->ht_type.tp_base = (PyTypeObject *) parent; Py_XINCREF(parent); if (PyType_Ready(&type->ht_type) < 0) throw std::runtime_error("Internal error in custom_type::custom_type()"); m_ptr = (PyObject *) type; /* Needed by pydoc */ if (((module &) scope).check()) attr("__module__") = scope_name; auto &type_info = detail::get_internals().registered_types[type_name]; type_info.type = (PyTypeObject *) m_ptr; type_info.type_size = type_size; type_info.init_holder = init_holder; attr("__pybind__") = capsule(&type_info); if (doc) attr("__doc__") = pybind::str(doc); scope.attr(name) = *this; } protected: /* Allocate a metaclass on demand (for static properties) */ handle metaclass() { auto &ht_type = ((PyHeapTypeObject *) m_ptr)->ht_type; auto &ob_type = ht_type.ob_base.ob_base.ob_type; if (ob_type == &PyType_Type) { std::string name_ = std::string(ht_type.tp_name) + "_meta"; PyHeapTypeObject *type = (PyHeapTypeObject*) PyType_Type.tp_alloc(&PyType_Type, 0); PyObject *name = PyUnicode_FromString(name_.c_str()); if (type == nullptr || name == nullptr) throw std::runtime_error("Internal error in custom_type::metaclass()"); Py_INCREF(name); type->ht_name = type->ht_qualname = name; type->ht_type.tp_name = strdup(name_.c_str()); type->ht_type.tp_base = &PyType_Type; type->ht_type.tp_flags |= Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HEAPTYPE; type->ht_type.tp_flags &= ~Py_TPFLAGS_HAVE_GC; if (PyType_Ready(&type->ht_type) < 0) throw std::runtime_error("Internal error in custom_type::metaclass()"); ob_type = (PyTypeObject *) type; Py_INCREF(type); } return handle((PyObject *) ob_type); } static int init(void *self, PyObject *, PyObject *) { std::string msg = std::string(Py_TYPE(self)->tp_name) + ": No constructor defined!"; PyErr_SetString(PyExc_TypeError, msg.c_str()); return -1; } static PyObject *new_instance(PyTypeObject *type, PyObject *, PyObject *) { const detail::type_info *type_info = capsule( PyObject_GetAttrString((PyObject *) type, const_cast("__pybind__")), false); instance *self = (instance *) PyType_GenericAlloc(type, 0); self->value = ::operator new(type_info->type_size); self->owned = true; self->parent = nullptr; self->constructed = false; detail::get_internals().registered_instances[self->value] = (PyObject *) self; return (PyObject *) self; } static void dealloc(instance *self) { if (self->value) { bool dont_cache = self->parent && ((instance *) self->parent)->value == self->value; if (!dont_cache) { // avoid an issue with internal references matching their parent's address auto ®istered_instances = detail::get_internals().registered_instances; auto it = registered_instances.find(self->value); if (it == registered_instances.end()) throw std::runtime_error("Deallocating unregistered instance!"); registered_instances.erase(it); } Py_XDECREF(self->parent); } Py_TYPE(self)->tp_free((PyObject*) self); } void install_buffer_funcs( buffer_info *(*get_buffer)(PyObject *, void *), void *get_buffer_data) { PyHeapTypeObject *type = (PyHeapTypeObject*) m_ptr; type->ht_type.tp_as_buffer = &type->as_buffer; type->as_buffer.bf_getbuffer = getbuffer; type->as_buffer.bf_releasebuffer = releasebuffer; auto info = ((detail::type_info *) capsule(attr("__pybind__"))); info->get_buffer = get_buffer; info->get_buffer_data = get_buffer_data; } static int getbuffer(PyObject *obj, Py_buffer *view, int flags) { auto const &typeinfo = ((detail::type_info *) capsule(handle(obj).attr("__pybind__"))); if (view == nullptr || obj == nullptr || !typeinfo || !typeinfo->get_buffer) { PyErr_SetString(PyExc_BufferError, "Internal error"); return -1; } memset(view, 0, sizeof(Py_buffer)); buffer_info *info = typeinfo->get_buffer(obj, typeinfo->get_buffer_data); view->obj = obj; view->ndim = 1; view->internal = info; view->buf = info->ptr; view->itemsize = info->itemsize; view->len = view->itemsize; for (auto s : info->shape) view->len *= s; if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT) view->format = const_cast(info->format.c_str()); if ((flags & PyBUF_STRIDES) == PyBUF_STRIDES) { view->ndim = info->ndim; view->strides = (Py_ssize_t *)&info->strides[0]; view->shape = (Py_ssize_t *) &info->shape[0]; } Py_INCREF(view->obj); return 0; } static void releasebuffer(PyObject *, Py_buffer *view) { delete (buffer_info *) view->internal; } }; NAMESPACE_END(detail) template > class class_ : public detail::custom_type { public: typedef detail::instance instance_type; PYBIND_OBJECT(class_, detail::custom_type, PyType_Check) class_(object &scope, const char *name, const char *doc = nullptr) : detail::custom_type(scope, name, type_id(), sizeof(type), sizeof(instance_type), init_holder, dealloc, nullptr, doc) { } class_(object &scope, const char *name, object &parent, const char *doc = nullptr) : detail::custom_type(scope, name, type_id(), sizeof(type), sizeof(instance_type), init_holder, dealloc, parent.ptr(), doc) { } template class_ &def(const char *name, Func f, const char *doc = nullptr, return_value_policy policy = return_value_policy::automatic) { attr(name) = cpp_method(f, name, doc, policy, (function) attr(name)); return *this; } template class_ & def_static(const char *name, Func f, const char *doc = nullptr, return_value_policy policy = return_value_policy::automatic) { attr(name) = cpp_function(f, name, doc, policy, (function) attr(name)); return *this; } template class_ &def(const detail::op_ &op, const char *doc = nullptr, return_value_policy policy = return_value_policy::automatic) { op.template execute(*this, doc, policy); return *this; } template class_ & def_cast(const detail::op_ &op, const char *doc = nullptr, return_value_policy policy = return_value_policy::automatic) { op.template execute_cast(*this, doc, policy); return *this; } template class_ &def(const detail::init &init, const char *doc = nullptr) { init.template execute(*this, doc); return *this; } template class_& def_buffer(Func &&func) { struct capture { Func func; }; capture *ptr = new capture { std::forward(func) }; install_buffer_funcs([](PyObject *obj, void *ptr) -> buffer_info* { detail::type_caster caster; if (!caster.load(obj, false)) return nullptr; return new buffer_info(((capture *) ptr)->func(caster)); }, ptr); return *this; } template class_ &def_readwrite(const char *name, D C::*pm, const char *doc = nullptr) { cpp_method fget([pm](const C &c) -> const D &{ return c.*pm; }, nullptr, nullptr, return_value_policy::reference_internal), fset([pm](C &c, const D &value) { c.*pm = value; }); def_property(name, fget, fset, doc); return *this; } template class_ &def_readonly(const char *name, const D C::*pm, const char *doc = nullptr) { cpp_method fget([pm](const C &c) -> const D &{ return c.*pm; }, nullptr, nullptr, return_value_policy::reference_internal); def_property(name, fget, doc); return *this; } template class_ &def_readwrite_static(const char *name, D *pm, const char *doc = nullptr) { cpp_function fget([pm](object) -> const D &{ return *pm; }, nullptr, nullptr, return_value_policy::reference_internal), fset([pm](object, const D &value) { *pm = value; }); def_property_static(name, fget, fset, doc); return *this; } template class_ &def_readonly_static(const char *name, const D *pm, const char *doc = nullptr) { cpp_function fget([pm](object) -> const D &{ return *pm; }, nullptr, nullptr, return_value_policy::reference_internal); def_property_static(name, fget, doc); return *this; } class_ &def_property(const char *name, const cpp_method &fget, const char *doc = nullptr) { def_property(name, fget, cpp_method(), doc); return *this; } class_ &def_property_static(const char *name, const cpp_function &fget, const char *doc = nullptr) { def_property_static(name, fget, cpp_function(), doc); return *this; } class_ &def_property(const char *name, const cpp_method &fget, const cpp_method &fset, const char *doc = nullptr) { object property( PyObject_CallFunction((PyObject *)&PyProperty_Type, const_cast("OOOs"), fget.ptr() ? fget.ptr() : Py_None, fset.ptr() ? fset.ptr() : Py_None, Py_None, doc), false); attr(name) = property; return *this; } class_ &def_property_static(const char *name, const cpp_function &fget, const cpp_function &fset, const char *doc = nullptr) { object property( PyObject_CallFunction((PyObject *)&PyProperty_Type, const_cast("OOOs"), fget.ptr() ? fget.ptr() : Py_None, fset.ptr() ? fset.ptr() : Py_None, Py_None, doc), false); metaclass().attr(name) = property; return *this; } private: static void init_holder(PyObject *inst_) { instance_type *inst = (instance_type *) inst_; new (&inst->holder) holder_type(inst->value); inst->constructed = true; } static void dealloc(PyObject *inst_) { instance_type *inst = (instance_type *) inst_; if (inst->owned) { if (inst->constructed) inst->holder.~holder_type(); else ::operator delete(inst->value); } custom_type::dealloc((detail::instance *) inst); } }; /// Binds C++ enumerations and enumeration classes to Python template class enum_ : public class_ { public: enum_(object &scope, const char *name, const char *doc = nullptr) : class_(scope, name, doc), m_parent(scope) { auto entries = new std::unordered_map(); this->def("__str__", [name, entries](Type value) -> std::string { auto it = entries->find(value); return std::string(name) + "." + ((it == entries->end()) ? std::string("???") : std::string(it->second)); }); m_entries = entries; } /// Export enumeration entries into the parent scope void export_values() { PyObject *dict = ((PyTypeObject *) this->m_ptr)->tp_dict; PyObject *key, *value; Py_ssize_t pos = 0; while (PyDict_Next(dict, &pos, &key, &value)) if (PyObject_IsInstance(value, this->m_ptr)) m_parent.attr(key) = value; } /// Add an enumeration entry enum_& value(char const* name, Type value) { this->attr(name) = pybind::cast(value, return_value_policy::copy); (*m_entries)[(int) value] = name; return *this; } private: std::unordered_map *m_entries; object &m_parent; }; NAMESPACE_BEGIN(detail) template struct init { template void execute(pybind::class_ &class_, const char *doc) const { /// Function which calls a specific C++ in-place constructor class_.def("__init__", [](Base *instance, Args... args) { new (instance) Base(args...); }, doc); } }; NAMESPACE_END(detail) template detail::init init() { return detail::init(); }; template void implicitly_convertible() { auto implicit_caster = [](PyObject *obj, PyTypeObject *type) -> PyObject *{ if (!detail::type_caster().load(obj, false)) return nullptr; tuple args(1); args[0] = obj; PyObject *result = PyObject_Call((PyObject *) type, args.ptr(), nullptr); if (result == nullptr) PyErr_Clear(); return result; }; std::string output_type_name = type_id(); auto & registered_types = detail::get_internals().registered_types; auto it = registered_types.find(output_type_name); if (it == registered_types.end()) throw std::runtime_error("implicitly_convertible: Unable to find type " + output_type_name); it->second.implicit_conversions.push_back(implicit_caster); } inline void init_threading() { PyEval_InitThreads(); } class gil_scoped_acquire { PyGILState_STATE state; public: inline gil_scoped_acquire() { state = PyGILState_Ensure(); } inline ~gil_scoped_acquire() { PyGILState_Release(state); } }; class gil_scoped_release { PyThreadState *state; public: inline gil_scoped_release() { state = PyEval_SaveThread(); } inline ~gil_scoped_release() { PyEval_RestoreThread(state); } }; NAMESPACE_END(pybind) #if defined(_MSC_VER) #pragma warning(pop) #endif