mirror of
https://github.com/RYDE-WORK/lnp_ml.git
synced 2026-01-19 20:03:14 +08:00
86 lines
3.6 KiB
Python
86 lines
3.6 KiB
Python
"""数据清洗脚本:修正原始数据中的问题"""
|
|
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import typer
|
|
from loguru import logger
|
|
|
|
from lnp_ml.config import RAW_DATA_DIR, INTERIM_DATA_DIR
|
|
|
|
|
|
app = typer.Typer()
|
|
|
|
|
|
@app.command()
|
|
def main(
|
|
input_path: Path = RAW_DATA_DIR / "internal_deleted_uncorrected.xlsx",
|
|
output_path: Path = INTERIM_DATA_DIR / "internal_corrected.csv",
|
|
):
|
|
"""
|
|
清洗原始数据,修正已知问题。
|
|
|
|
修正内容:
|
|
1. 修正肌肉注射组 Biodistribution_muscle=0.7745 的数据
|
|
2. 修复阳性对照组 (Amine="Crtl") 的数据
|
|
3. 按给药途径分组进行 z-score 标准化
|
|
4. 对 size 列取 log
|
|
"""
|
|
logger.info(f"Loading data from {input_path}")
|
|
df = pd.read_excel(input_path, header=2)
|
|
logger.info(f"Loaded {len(df)} samples")
|
|
|
|
# 修正肌肉注射组 0.7745 的数据
|
|
logger.info("Correcting Biodistribution_muscle=0.7745 rows...")
|
|
rows_to_correct = df[df["Biodistribution_muscle"] == 0.7745]
|
|
for index, row in rows_to_correct.iterrows():
|
|
total_biodistribution = pd.to_numeric(row[[
|
|
"Biodistribution_lymph_nodes",
|
|
"Biodistribution_heart",
|
|
"Biodistribution_liver",
|
|
"Biodistribution_spleen",
|
|
"Biodistribution_lung",
|
|
"Biodistribution_kidney",
|
|
"Biodistribution_muscle"
|
|
]]).sum()
|
|
df.at[index, "Biodistribution_lymph_nodes"] = pd.to_numeric(row["Biodistribution_lymph_nodes"]) / total_biodistribution
|
|
df.at[index, "Biodistribution_heart"] = pd.to_numeric(row["Biodistribution_heart"]) / total_biodistribution
|
|
df.at[index, "Biodistribution_liver"] = pd.to_numeric(row["Biodistribution_liver"]) / total_biodistribution
|
|
df.at[index, "Biodistribution_spleen"] = pd.to_numeric(row["Biodistribution_spleen"]) / total_biodistribution
|
|
df.at[index, "Biodistribution_lung"] = pd.to_numeric(row["Biodistribution_lung"]) / total_biodistribution
|
|
df.at[index, "Biodistribution_kidney"] = pd.to_numeric(row["Biodistribution_kidney"]) / total_biodistribution
|
|
df.at[index, "Biodistribution_muscle"] = pd.to_numeric(row["Biodistribution_muscle"]) / total_biodistribution
|
|
df.at[index, "quantified_total_luminescence"] = pd.to_numeric(row["quantified_total_luminescence"]) / (1 - 0.7745)
|
|
df.at[index, "unnormalized_delivery"] = df.at[index, "quantified_total_luminescence"]
|
|
logger.info(f" Corrected {len(rows_to_correct)} rows")
|
|
|
|
# 修复阳性对照组的数据
|
|
logger.info("Fixing control group (Amine='Crtl')...")
|
|
rows_to_override = df["Amine"] == "Crtl"
|
|
df.loc[rows_to_override, "quantified_total_luminescence"] = 1
|
|
df.loc[rows_to_override, "unnormalized_delivery"] = 1
|
|
logger.info(f" Fixed {rows_to_override.sum()} rows")
|
|
|
|
# 分别对肌肉注射组和静脉注射组重新进行 z-score 标准化
|
|
logger.info("Z-score normalizing delivery by Route_of_administration...")
|
|
df["unnormalized_delivery"] = pd.to_numeric(df["unnormalized_delivery"], errors="coerce")
|
|
df["quantified_delivery"] = (
|
|
df.groupby("Route_of_administration")["unnormalized_delivery"]
|
|
.transform(lambda x: (x - x.mean()) / x.std())
|
|
)
|
|
|
|
# 对 size 列取 log
|
|
logger.info("Log-transforming size column...")
|
|
df["size"] = pd.to_numeric(df["size"], errors="coerce")
|
|
df["size"] = np.log(df["size"].replace(0, np.nan)) # 避免 log(0)
|
|
|
|
# 保存
|
|
output_path.parent.mkdir(parents=True, exist_ok=True)
|
|
df.to_csv(output_path, index=False)
|
|
logger.success(f"Saved cleaned data to {output_path}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
app()
|