#version 450 #extension GL_EXT_shader_explicit_arithmetic_types : require #include "mul_mat_vec_base.comp" layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in; shared FLOAT_TYPE tmp[32]; // Declare aliased versions of A and B bindings that can use 16b/32b loads for // the quantized values, and vec4 loads for B. struct block_q4_K_u32 { f16vec2 d; uint32_t scales[3*QUANT_K/64/4]; uint32_t qs[QUANT_K/2/4]; }; struct block_q4_K_u16 { f16vec2 d; uint16_t scales[3*QUANT_K/64/2]; uint16_t qs[QUANT_K/2/2]; }; layout (binding = 0) readonly buffer A_u32 {block_q4_K_u32 data_a_u32[];}; layout (binding = 0) readonly buffer A_u16 {block_q4_K_u16 data_a_u16[];}; layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];}; // This shader assumes K_QUANTS_PER_ITERATION == 2 for alignment of loads void main() { const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z; uint a_offset, b_offset, d_offset; get_offsets(a_offset, b_offset, d_offset); const uint num_blocks_per_row = p.ncols / QUANT_K; const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row; const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16 const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1 const uint step = 8/K_QUANTS_PER_ITERATION; // 8 or 4 const uint il = tid/step; // 0...3 const uint ir = tid - step*il; // 0...7 or 0...3 const uint n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4 const uint v_im = il / 2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224 const uint v_in = il % 2; const uint l0 = n * (2 * ir + v_in); // 0...15 const uint q_offset = 32*v_im + l0; const uint y_offset = 64*v_im + l0; FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp [[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) { const uint y1_idx = i * QUANT_K + y_offset; const uint y2_idx = y1_idx + 128; f16vec2 d = data_a[ib0 + i].d; const FLOAT_TYPE dall = FLOAT_TYPE(d.x); const FLOAT_TYPE dmin = FLOAT_TYPE(d.y); uint32_t scale0_u32 = data_a_u16[ib0 + i].scales[v_im ]; uint32_t scale4_u32 = data_a_u16[ib0 + i].scales[v_im + 2]; uint32_t scale8_u32 = data_a_u16[ib0 + i].scales[v_im + 4]; uvec4 scale0 = uvec4(unpack8(scale0_u32)); uvec4 scale4 = uvec4(unpack8(scale4_u32)); uvec4 scale8 = uvec4(unpack8(scale8_u32)); const uint32_t sc0 = ( scale0.x & 0x3f); const uint32_t sc1 = ( scale0.y & 0x3f); const uint32_t sc2 = ( scale4.x & 0x3f); const uint32_t sc3 = ( scale4.y & 0x3f); const uint32_t sc4 = (( scale8.x & 0x0f) | ((scale0.x & 0xc0) >> 2)); const uint32_t sc5 = (( scale8.y & 0x0f) | ((scale0.y & 0xc0) >> 2)); const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2)); const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2)); uint32_t qs0_u32 = data_a_u32[ib0 + i].qs[q_offset / 4]; uint32_t qs64_u32 = data_a_u32[ib0 + i].qs[q_offset / 4 + 16]; uint32_t qs0_u32_lo4 = qs0_u32 & 0x0F0F0F0F; uint32_t qs0_u32_hi4 = (qs0_u32 >> 4) & 0x0F0F0F0F; uint32_t qs64_u32_lo4 = qs64_u32 & 0x0F0F0F0F; uint32_t qs64_u32_hi4 = (qs64_u32 >> 4) & 0x0F0F0F0F; uvec4 qs0_lo4 = uvec4(unpack8(qs0_u32_lo4)); uvec4 qs64_lo4 = uvec4(unpack8(qs64_u32_lo4)); uvec4 qs0_hi4 = uvec4(unpack8(qs0_u32_hi4)); uvec4 qs64_hi4 = uvec4(unpack8(qs64_u32_hi4)); const uint32_t q4_0 = qs0_lo4.x; const uint32_t q4_1 = qs0_lo4.y; const uint32_t q4_2 = qs0_lo4.z; const uint32_t q4_3 = qs0_lo4.w; const uint32_t q4_4 = qs0_hi4.x; const uint32_t q4_5 = qs0_hi4.y; const uint32_t q4_6 = qs0_hi4.z; const uint32_t q4_7 = qs0_hi4.w; const uint32_t q4_8 = qs64_lo4.x; const uint32_t q4_9 = qs64_lo4.y; const uint32_t q4_10 = qs64_lo4.z; const uint32_t q4_11 = qs64_lo4.w; const uint32_t q4_12 = qs64_hi4.x; const uint32_t q4_13 = qs64_hi4.y; const uint32_t q4_14 = qs64_hi4.z; const uint32_t q4_15 = qs64_hi4.w; B_TYPE_VEC4 by10 = data_b_v4[(b_offset + y1_idx) / 4]; B_TYPE_VEC4 by132 = data_b_v4[(b_offset + y1_idx) / 4 + 8]; B_TYPE_VEC4 by20 = data_b_v4[(b_offset + y2_idx) / 4]; B_TYPE_VEC4 by232 = data_b_v4[(b_offset + y2_idx) / 4 + 8]; const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x), q4_0, fma(FLOAT_TYPE(by10.y), q4_1, fma(FLOAT_TYPE(by10.z), q4_2, FLOAT_TYPE(by10.w) * q4_3))); const FLOAT_TYPE sy = fma(FLOAT_TYPE(by132.x), q4_4, fma(FLOAT_TYPE(by132.y), q4_5, fma(FLOAT_TYPE(by132.z), q4_6, FLOAT_TYPE(by132.w) * q4_7))); const FLOAT_TYPE sz = fma(FLOAT_TYPE(by20.x), q4_8, fma(FLOAT_TYPE(by20.y), q4_9, fma(FLOAT_TYPE(by20.z), q4_10, FLOAT_TYPE(by20.w) * q4_11))); const FLOAT_TYPE sw = fma(FLOAT_TYPE(by232.x), q4_12, fma(FLOAT_TYPE(by232.y), q4_13, fma(FLOAT_TYPE(by232.z), q4_14, FLOAT_TYPE(by232.w) * q4_15))); const FLOAT_TYPE smin = fma(FLOAT_TYPE(by10.x), sc2, fma(FLOAT_TYPE(by132.x), sc3, fma(FLOAT_TYPE(by20.x), sc6, fma(FLOAT_TYPE(by232.x), sc7, fma(FLOAT_TYPE(by10.y), sc2, fma(FLOAT_TYPE(by132.y), sc3, fma(FLOAT_TYPE(by20.y), sc6, fma(FLOAT_TYPE(by232.y), sc7, fma(FLOAT_TYPE(by10.z), sc2, fma(FLOAT_TYPE(by132.z), sc3, fma(FLOAT_TYPE(by20.z), sc6, fma(FLOAT_TYPE(by232.z), sc7, fma(FLOAT_TYPE(by10.w), sc2, fma(FLOAT_TYPE(by132.w), sc3, fma(FLOAT_TYPE(by20.w), sc6, FLOAT_TYPE(by232.w) * sc7))))))))))))))); temp = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp)); } tmp[gl_LocalInvocationID.x] = temp; // sum up partial sums and write back result barrier(); [[unroll]] for (uint s = 16; s > 0; s >>= 1) { if (tid < s) { tmp[tid] += tmp[tid + s]; } barrier(); } if (tid == 0) { data_d[d_offset + row] = D_TYPE(tmp[0]); } }