Merge pull request #36 from kvcache-ai/develop-0.1.2

Release v0.1.2
This commit is contained in:
UnicornChan 2024-08-15 20:59:50 +08:00 committed by GitHub
commit 77a34c289c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
69 changed files with 4808 additions and 1970 deletions

View File

@ -0,0 +1,252 @@
name: Build Wheels
on:
workflow_dispatch:
inputs:
release:
description: 'Release? 1 = yes, 0 = no'
default: '0'
required: true
type: string
jobs:
build_wheels:
name: ${{ matrix.os }} Python=${{ matrix.pyver }} CUDA=${{ matrix.cuda }} CPU_INSTRUCT=${{ matrix.instruct }} Torch=${{ matrix.torch }}
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
include:
# Ubuntu
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.5.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.5.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.5.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.4.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.4.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.4.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.2.2', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.2.2', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.2.2', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.1.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.1.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.1.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.5.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.5.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.5.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.4.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.4.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.4.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.2.2', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.2.2', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.2.2', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.1.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.1.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.1.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.5.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.5.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.5.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.4.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.4.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.4.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.2.2', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.2.2', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.2.2', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.1.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.1.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.1.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.5.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.5.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.5.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.4.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.4.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.4.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.2.2', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.2.2', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.2.2', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.1.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.1.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.11', cuda: '12.1.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.5.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.5.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.5.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.4.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.4.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.4.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.2.2', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.2.2', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.2.2', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.1.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.1.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.1.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.5.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.5.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.5.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.4.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.4.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.4.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.2.2', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.2.2', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.2.2', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.1.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.1.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: ubuntu-20.04, pyver: '3.10', cuda: '12.1.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
# Windows
- { os: windows-2022, pyver: '3.12', cuda: '12.5.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: windows-2022, pyver: '3.12', cuda: '12.5.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: windows-2022, pyver: '3.12', cuda: '12.4.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: windows-2022, pyver: '3.12', cuda: '12.4.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: windows-2022, pyver: '3.12', cuda: '12.2.2', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: windows-2022, pyver: '3.12', cuda: '12.2.2', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: windows-2022, pyver: '3.12', cuda: '12.1.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: windows-2022, pyver: '3.12', cuda: '12.1.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: windows-2022, pyver: '3.12', cuda: '12.5.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: windows-2022, pyver: '3.12', cuda: '12.5.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: windows-2022, pyver: '3.12', cuda: '12.4.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: windows-2022, pyver: '3.12', cuda: '12.4.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: windows-2022, pyver: '3.12', cuda: '12.2.2', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: windows-2022, pyver: '3.12', cuda: '12.2.2', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: windows-2022, pyver: '3.12', cuda: '12.1.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: windows-2022, pyver: '3.12', cuda: '12.1.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: windows-2022, pyver: '3.11', cuda: '12.5.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: windows-2022, pyver: '3.11', cuda: '12.5.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: windows-2022, pyver: '3.11', cuda: '12.4.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: windows-2022, pyver: '3.11', cuda: '12.4.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: windows-2022, pyver: '3.11', cuda: '12.2.2', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: windows-2022, pyver: '3.11', cuda: '12.2.2', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: windows-2022, pyver: '3.11', cuda: '12.1.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: windows-2022, pyver: '3.11', cuda: '12.1.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: windows-2022, pyver: '3.11', cuda: '12.5.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: windows-2022, pyver: '3.11', cuda: '12.5.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: windows-2022, pyver: '3.11', cuda: '12.4.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: windows-2022, pyver: '3.11', cuda: '12.4.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: windows-2022, pyver: '3.11', cuda: '12.2.2', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: windows-2022, pyver: '3.11', cuda: '12.2.2', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: windows-2022, pyver: '3.11', cuda: '12.1.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: windows-2022, pyver: '3.11', cuda: '12.1.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: windows-2022, pyver: '3.10', cuda: '12.5.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: windows-2022, pyver: '3.10', cuda: '12.5.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: windows-2022, pyver: '3.10', cuda: '12.4.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: windows-2022, pyver: '3.10', cuda: '12.4.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: windows-2022, pyver: '3.10', cuda: '12.2.2', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: windows-2022, pyver: '3.10', cuda: '12.2.2', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: windows-2022, pyver: '3.10', cuda: '12.1.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: windows-2022, pyver: '3.10', cuda: '12.1.1', torch: '2.4.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: windows-2022, pyver: '3.10', cuda: '12.5.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: windows-2022, pyver: '3.10', cuda: '12.5.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: windows-2022, pyver: '3.10', cuda: '12.4.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '124'}
- { os: windows-2022, pyver: '3.10', cuda: '12.4.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
- { os: windows-2022, pyver: '3.10', cuda: '12.2.2', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: windows-2022, pyver: '3.10', cuda: '12.2.2', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
- { os: windows-2022, pyver: '3.10', cuda: '12.1.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX512', torch_cu: '121'}
- { os: windows-2022, pyver: '3.10', cuda: '12.1.1', torch: '2.3.0', cudaarch: '8.0;8.6;8.7;8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '121'}
defaults:
run:
shell: pwsh
steps:
- uses: actions/checkout@v3
- name: Free Disk Space
uses: jlumbroso/free-disk-space@v1.3.1
if: runner.os == 'Linux'
with:
tool-cache: true
android: true
dotnet: true
haskell: true
large-packages: false
swap-storage: true
- uses: actions/setup-python@v4
with:
python-version: ${{ matrix.pyver }}
- name: check_space
run: |
if($IsLinux) {df -h}
if($IsWindows) {Get-PSDrive -PSProvider 'FileSystem'}
- uses: actions/setup-node@v4
with:
node-version: 20
- name: Setup Mamba
if: matrix.cuda != ''
uses: conda-incubator/setup-miniconda@v2.3.0
with:
activate-environment: "ktransformers"
python-version: ${{ matrix.pyver }}
miniforge-variant: Mambaforge
miniforge-version: latest
use-mamba: true
add-pip-as-python-dependency: true
auto-activate-base: false
- name: build web
run: |
cd ktransformers/website/
npm install
npm run build
cd ../../
- name: build for cuda
if: matrix.cuda != ''
run: |
git submodule init
git submodule update
if($IsWindows){
$originalPath = Get-Location
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -DevCmdArguments '-arch=x64 -host_arch=x64'
$env:DISTUTILS_USE_SDK=1
Set-Location $originalPath
}
$cudaVersion = '${{ matrix.cuda }}'
$env:MAMBA_NO_LOW_SPEED_LIMIT = 1
mamba install -y -c nvidia/label/cuda-$cudaVersion cuda-toolkit cuda-runtime
$env:CUDA_PATH = $env:CONDA_PREFIX
$env:CUDA_HOME = $env:CONDA_PREFIX
if ($IsLinux) {
$env:LD_LIBRARY_PATH = $env:CONDA_PREFIX + '/lib:' + $env:LD_LIBRARY_PATH
$env:LD_LIBRARY_PATH = $env:CONDA_PREFIX + '/lib/python${{ matrix.pyver }}/site-packages/nvidia/nvjitlink/lib:' + $env:LD_LIBRARY_PATH
if (!(Test-Path $env:CUDA_HOME/lib64)) {
New-Item -ItemType SymbolicLink -Path $env:CUDA_HOME/lib64 -Target $env:CUDA_HOME/lib
}
}
if ($IsWindows) {
$env:CUDA_PATH = "$env:CUDA_PATH/Library"
$env:CUDA_HOME = $env:CUDA_PATH
$env:PATH = "$env:CUDA_PATH/bin;" + $env:PATH
cp $env:CUDA_PATH/lib/*.lib $env:CUDA_PATH/lib/x64/
$env:INCLUDE =$env:CUDA_PATH + "/include/targets/x64;" + $env:INCLUDE
}
python -m pip install torch==${{ matrix.torch }} torchvision torchaudio --index-url https://download.pytorch.org/whl/cu${{ matrix.torch_cu }}
python -m pip install cpufeature build wheel ninja packaging setuptools
$env:KTRANSFORMERS_FORCE_BUILD = "TRUE"
$env:CPU_INSTRUCT = '${{ matrix.instruct }}'
$env:TORCH_CUDA_ARCH_LIST = '${{ matrix.cudaarch }}'
python -m build --no-isolation --verbose
- name: create Rlease dir
run: |
if ($IsWindows) {
$env:date = $(Get-Date -Format "yyyy-MM-dd")
New-Item -ItemType Directory -Force -Path "$Env:USERPROFILE\.ssh"
$Env:SSH_PATH = "$Env:USERPROFILE\.ssh\id_rsa"
Set-Content -Path $Env:SSH_PATH -Value "${{ secrets.SSH_PRIVATE_KEY }}"
(Get-Content -Path $Env:SSH_PATH).Replace("`r`n","`n") | Set-Content -Path $Env:SSH_PATH
chmod 600 $Env:SSH_PATH
}
if ($IsLinux) {
$env:date = $(date +%Y-%m-%d)
mkdir -p ~/.ssh/
echo "${{ secrets.SSH_PRIVATE_KEY }}" > ~/.ssh/id_rsa
chmod 600 ~/.ssh/id_rsa
}
ssh -p ${{ secrets.SSH_PORT }} -o StrictHostKeyChecking=no root@${{ secrets.SSH_SERVER }} "mkdir -p /mnt/data/release-$env:date"
scp -P ${{ secrets.SSH_PORT }} -o StrictHostKeyChecking=no dist/*.whl root@${{ secrets.SSH_SERVER }}:/mnt/data/release-$env:date/

132
.github/workflows/package_wheel_test.yml vendored Normal file
View File

@ -0,0 +1,132 @@
name: Build Wheels
on:
workflow_dispatch:
inputs:
release:
description: 'Release? 1 = yes, 0 = no'
default: '0'
required: true
type: string
jobs:
build_wheels:
name: ${{ matrix.os }} Python=${{ matrix.pyver }} CUDA=${{ matrix.cuda }} CPU_INSTRUCT=${{ matrix.instruct }} Torch=${{ matrix.torch }}
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
include:
# Ubuntu
- { os: ubuntu-20.04, pyver: '3.12', cuda: '12.2.2', torch: '2.3.0', cudaarch: '8.9;9.0+PTX', instruct: 'FANCY', torch_cu: '121'}
- { os: windows-2022, pyver: '3.11', cuda: '12.5.1', torch: '2.4.0', cudaarch: '8.9;9.0+PTX', instruct: 'AVX2', torch_cu: '124'}
defaults:
run:
shell: pwsh
steps:
- uses: actions/checkout@v3
- name: Free Disk Space
uses: jlumbroso/free-disk-space@v1.3.1
if: runner.os == 'Linux'
with:
tool-cache: true
android: true
dotnet: true
haskell: true
large-packages: false
swap-storage: true
- uses: actions/setup-python@v4
with:
python-version: ${{ matrix.pyver }}
- name: check_space
run: |
if($IsLinux) {df -h}
if($IsWindows) {Get-PSDrive -PSProvider 'FileSystem'}
- uses: actions/setup-node@v4
with:
node-version: 20
- name: Setup Mamba
if: matrix.cuda != ''
uses: conda-incubator/setup-miniconda@v2.3.0
with:
activate-environment: "ktransformers"
python-version: ${{ matrix.pyver }}
miniforge-variant: Mambaforge
miniforge-version: latest
use-mamba: true
add-pip-as-python-dependency: true
auto-activate-base: false
- name: build web
run: |
cd ktransformers/website/
npm install
npm run build
cd ../../
- name: build for cuda
if: matrix.cuda != ''
run: |
git submodule init
git submodule update
if($IsWindows){
$originalPath = Get-Location
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -DevCmdArguments '-arch=x64 -host_arch=x64'
$env:DISTUTILS_USE_SDK=1
Set-Location $originalPath
}
$cudaVersion = '${{ matrix.cuda }}'
$env:MAMBA_NO_LOW_SPEED_LIMIT = 1
mamba install -y -c nvidia/label/cuda-$cudaVersion cuda-toolkit cuda-runtime
$env:CUDA_PATH = $env:CONDA_PREFIX
$env:CUDA_HOME = $env:CONDA_PREFIX
if ($IsLinux) {
$env:LD_LIBRARY_PATH = $env:CONDA_PREFIX + '/lib:' + $env:LD_LIBRARY_PATH
$env:LD_LIBRARY_PATH = $env:CONDA_PREFIX + '/lib/python${{ matrix.pyver }}/site-packages/nvidia/nvjitlink/lib:' + $env:LD_LIBRARY_PATH
if (!(Test-Path $env:CUDA_HOME/lib64)) {
New-Item -ItemType SymbolicLink -Path $env:CUDA_HOME/lib64 -Target $env:CUDA_HOME/lib
}
}
if ($IsWindows) {
$env:CUDA_PATH = "$env:CUDA_PATH/Library"
$env:CUDA_HOME = $env:CUDA_PATH
$env:PATH = "$env:CUDA_PATH/bin;" + $env:PATH
cp $env:CUDA_PATH/lib/*.lib $env:CUDA_PATH/lib/x64/
$env:INCLUDE =$env:CUDA_PATH + "/include/targets/x64;" + $env:INCLUDE
}
python -m pip install torch==${{ matrix.torch }} torchvision torchaudio --index-url https://download.pytorch.org/whl/cu${{ matrix.torch_cu }}
python -m pip install cpufeature build wheel ninja packaging setuptools
$env:KTRANSFORMERS_FORCE_BUILD = "TRUE"
$env:CPU_INSTRUCT = '${{ matrix.instruct }}'
$env:TORCH_CUDA_ARCH_LIST = '${{ matrix.cudaarch }}'
python -m build --no-isolation --verbose
- name: create Rlease dir
run: |
if ($IsWindows) {
$env:date = $(Get-Date -Format "yyyy-MM-dd")
New-Item -ItemType Directory -Force -Path "$Env:USERPROFILE\.ssh"
$Env:SSH_PATH = "$Env:USERPROFILE\.ssh\id_rsa"
Set-Content -Path $Env:SSH_PATH -Value "${{ secrets.SSH_PRIVATE_KEY }}"
(Get-Content -Path $Env:SSH_PATH).Replace("`r`n","`n") | Set-Content -Path $Env:SSH_PATH
chmod 600 $Env:SSH_PATH
}
if ($IsLinux) {
$env:date = $(date +%Y-%m-%d)
mkdir -p ~/.ssh/
echo "${{ secrets.SSH_PRIVATE_KEY }}" > ~/.ssh/id_rsa
chmod 600 ~/.ssh/id_rsa
}
ssh -p ${{ secrets.SSH_PORT }} -o StrictHostKeyChecking=no root@${{ secrets.SSH_SERVER }} "mkdir -p /mnt/data/release-$env:date"
scp -P ${{ secrets.SSH_PORT }} -o StrictHostKeyChecking=no dist/*.whl root@${{ secrets.SSH_SERVER }}:/mnt/data/release-$env:date/

5
.gitignore vendored
View File

@ -14,4 +14,7 @@ node_modules
.DS_Store
compile_commands.json
*.egg-info*
*dist/
*dist/
ktransformers/server/local_store/
ktransformers/server_test1.db
*.patch

View File

@ -268,7 +268,10 @@ In this example, the AutoModel is first initialized on the meta device to avoid
After injection, the original `generate` interface is available, but we also provide a compatible `prefill_and_generate` method, which enables further optimizations like CUDAGraph to improve generation speed.
<h3>YAML Template</h3>
<h3>How to custom your model</h3>
A detailed tutorial of the injection and multi-GPU using DeepSeek-V2 as an example is given [here](doc/en/injection_tutorial.md).
Below is an example of a YAML template for replacing all original Linear modules with Marlin, an advanced 4-bit quantization kernel.
```yaml
@ -287,7 +290,7 @@ Each rule in the YAML file has two parts: `match` and `replace`. The `match` par
You can find example rule templates for optimizing DeepSeek-V2 and Qwen2-57B-A14, two SOTA MoE models, in the [ktransformers/optimize/optimize_rules](ktransformers/optimize/optimize_rules) directory. These templates are used to power the `local_chat.py` demo.
A detailed description of the injection using DeepSeek-V2 as an example is given [here](doc/en/deepseek-v2-injection.md).
If you are interested in our design principles and the implementation of the injection framework, please refer to the [design document](doc/en/deepseek-v2-injection.md).
<h2 id="ack">Acknowledgment and Contributors</h2>

Binary file not shown.

After

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 274 KiB

BIN
doc/assets/multi_gpu.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

View File

@ -90,7 +90,7 @@ The YAML rule is listed below.
- match:
name: "^model\\.layers\\..*\\.self_attn$" # regular expression
replace:
class: ktransformers.operators.attention.DeepseekV2AttentionInjected # optimized MLA implementation
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
```
As we can see, each rule in the YAML file has two parts: `match` and `replace`.
@ -98,9 +98,9 @@ The match part specifies which module should be replaced, and the replace part s
<h3 id="experts">Routed Experts </h3>
For routed experts, the module we inject is a wrapper of CPUInfer, KTransformersMLPExpert. There are several implementations within a wrapper, and we need to specify keywords to tell the wrapper which implementation we want to use and how we intend to use it.
For routed experts, the module we inject is a wrapper of CPUInfer, KTransformersExperts. There are several implementations within a wrapper, and we need to specify keywords to tell the wrapper which implementation we want to use and how we intend to use it.
In KTransformers, some models exhibit different behaviors during prefilling and generation for better performance. KTransformersMLPExpert is one of them. All these special modules have a `device` keyword describing which device the module should be initialized on. Other keywords specify the behaviors during prefilling and generation and may be differ when using different injection modules. Here, we specify which implementation on which device we want to use during prefilling and generation, and which device the output should be on.
In KTransformers, some models exhibit different behaviors during prefilling and generation for better performance. KTransformersExperts is one of them. All these special modules have a `device` keyword describing which device the module should be initialized on. Other keywords specify the behaviors during prefilling and generation and may be differ when using different injection modules. Here, we specify which implementation on which device we want to use during prefilling and generation, and which device the output should be on.
Note that we only use these parameters when layer-wise prefilling is enabled; otherwise, prefilling is conducted with the same configuration as generation.
In the original implementation of Transformers, MoE is implemented using `nn.ModuleList`. We don't want KTransformers to iterate through all the sub-modules in the list, so we set `recursive: False` in this rule to prevent recursive injection into submodules of the current module. Here is the YAML rule:
@ -109,13 +109,13 @@ In the original implementation of Transformers, MoE is implemented using `nn.Mod
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersMLPExpert # custom MoE Kernel with expert parallelism
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert parallelism
device: "cpu" # device to load this module on initialization
kwargs:
prefill_device: "cuda"
prefill_mlp_type: "MLPExpertsTorch"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_mlp_type: "MLPCPUExperts"
generate_op: "KExpertsCPU"
out_device: "cuda"
recursive: False # don't recursively inject submodules of this module
```
@ -126,7 +126,7 @@ If we inject the expert list as a custom module, we can't use the interface in `
- match:
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.DeepseekV2MoEInjected # MLP module with custom forward function
class: ktransformers.operators.experts.KDeepseekV2MoE # MLP module with custom forward function
```
<h3 id="linear">Other Linear Modules</h3>
@ -140,12 +140,12 @@ We also need to transfer some keywords similar to the injection of experts. Here
name: "^model\\.layers\\.(?!.*self_attn).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformerLinear # optimized Kernel on quantized data types
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "QuantizedLinearMarlin"
prefill_op: "QuantizedLinearTorch"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
```
<h3 id="Pre-compute Buffers">Pre-compute Buffers </h3>

View File

@ -0,0 +1,328 @@
# Tutorial: Inject Operator Step by Step
> Author: Azure-Tang
## TL;DR
This tutorial will guide you through the process of injecting custom operators into a model using the KTransformers framework. We will use the DeepSeekV2-Chat model as an example to demonstrate how to inject custom operators into the model step by step. The tutorial will cover the following topics:
* [How to write injection rules](#how-to-write-injection-rules)
* [Understanding the structure of the model](#understanding-model-structure)
* [Multi-GPU](#muti-gpu)
* [How to write a new operator and inject it into the model](#how-to-write-a-new-operator-and-inject-into-the-model)
## How to Write Injection Rules
The basic form of the injection rules for the Inject framework is as follows:
```yaml
- match:
name: "^model\\.layers\\..*\\.*$" # Target module name
class: torch.nn.Linear # Target module
replace:
class: "default"
kwargs:
generate_device: "cuda:0"
# your_op_param_1: 1234
# your_op_param_2: 5678
recursive: True
```
* match: This field marks the matching rules, which can appear in two forms, name and class. These two matching rules can appear together or separately; they only match when both criteria are met.
* replace:
* class: Python class that can be imported to replace the target module. If no replacement is desired, set to default.
* kwargs: List of parameters needed for module initialization.
* generate_device: The device for this module, can be set to “cpu”, “cuda”, “cuda:1”, etc.
* recursive: Whether to recursively inject this modules submodules, default is True.
For the recursive field: Some modules contain multiple submodules, such as the Self-attention module typically includes q/k/v/o four linear modules. If we replace the self-attention module but do not want the internal linear modules to be covered by other rules, set this rule to False.
## Understanding Model Structure
Using [deepseek-ai/DeepSeek-V2-Lite-Chat](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat) as an example, we can follow the above rules step by step to inject our custom module and run it. KTransformers offers a high degree of flexibility, allowing you to replace/experiment with basic operators. However, it also requires users to clearly understand the structure of the model they are running.
Fortunately, knowing the structure of a model is very simple. Open the file list on the [deepseek-ai/DeepSeek-V2-Lite](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat/tree/main) homepage, and you can see the following files:
<p align="center">
<picture>
<img alt="Inject-Struction" src="../assets/model_structure_guild.png" width=60%>
</picture>
</p>
From the `.saftensors` file, we can see the name of each layers weights, corresponding to the match.name attribute in the injection rules.
From the `modeling_deepseek.py` file, we can see the specific implementation of each module class, with the class name corresponding to the match.class attribute in the injection rules.
The structure of the DeepSeekV2 model from the `.saftensors` and `modeling_deepseek.py` files is as follows:
<p align="center">
<picture>
<img alt="Inject-Struction" src="../assets/deepseekv2_structure.png" width=60%>
</picture>
</p>
Supported operators and their corresponding classes are as follows:
| match | replace | backends | descriptions |
| --------- | ---------------------- | ----------------------- | -------------------- |
| Linear | KTransformersLinear | KLinearMarlin | Marlin as backend |
| | | KLinearTorch | pytorch as backend |
| | | KLinearCPUInfer | llamafile as backend |
| experts | KTransformersExperts | KExpertsTorch | pytorch as backend |
| | | KExpertsMarlin | Marlin as backend |
| | | KExpertsCPU | llamafile as backend |
| Attention | KDeepseekV2Attention | KDeepseekV2Attention | MLA implementation |
| MoE | KMistralSparseMoEBlock | KQwen2MoeSparseMoeBlock | MoE for Qwen2 |
| | KDeepseekV2MoE | KDeepseekV2MoE | MoE for DeepseekV2 |
| Model | KQwen2MoeModel | KQwen2MoeModel | Model for Qwen2 |
| | KDeepseekV2Model | KDeepseekV2Model | Model for DeepseekV2 |
| RoPE | RotaryEmbedding | RotaryEmbedding | RoPE module |
| | YarnRotaryEmbedding | YarnRotaryEmbedding | RoPE module |
Then we start step-by-step injection of custom modules, our targets are:
* Replace the linear module with custom Marlin linear module.
* Replace the self-attention module with a custom Absorption-based MLA module.
* Replace the experts module with a custom Experts module.
* Replace the MoE module with a custom MoE module.
* Replace the RoPE module with a custom RoPE module.
* Set the running device for each module.
The full implementation of the injection rules can be found in the [here](https://github.com/kvcache-ai/ktransformers/blob/main/ktransformers/optimize/optimize_rules/DeepSeek-V2-Chat.yaml).
## Matrix Absorption-based MLA Injection
For the injection of the Attention module, we only need to use a regular expression to match the module names used in transformers and replace them with our own MLA module implementation. The YAML injection rule is as follows:
```yaml
- match:
name: "^model\\.layers\\..*\\.self_attn$" # Regular expression
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # Optimized MLA implementation
```
As you can see, each rule in the YAML file has two parts: match and replace. The match part specifies the module to be replaced, and the replace part specifies the module to be injected into the model along with the initialization keywords.
## Injection of Routed Experts
For Routed Experts (corresponding to the exps in the diagram), the module we inject is CPUInfer, which is wrapped in the wrapper module KTransformersExperts. KTransformersExperts has multiple implementations, and we need to specify keywords to tell the wrapper module which implementation we want to use and how we plan to use it.
In the source code of the transformer, MoE is implemented using nn.ModuleList. We do not want KTransformers to traverse all submodules in the list and inject them one by one, so in this rule, we set recursive: False to prevent recursive injection into the submodules of this module. The YAML rule is as follows:
```yaml
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # Custom MoE kernel with expert parallelism
kwargs:
generate_device: "cpu"
generate_op: "MLPCPUExperts"
out_device: "cuda"
recursive: False # Don't recursively inject submodules of this module
```
If we inject Routed Experts as a custom module, we cannot use the interfaces in the original `nn.ModuleList`. Therefore, it is necessary to modify the forward function in the FFN module. The simplest method is to implement a new module with a custom forward function and inject it.
```yaml
- match:
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # MLP module with custom forward function
```
## Injection of Linear Layers
For the remaining linear layer modules, we aim to use quantized operators to save storage space while improving performance. Since there is no current research on using MLA and quantization together, we do not want to inject linear into the MLA operator. Therefore, we can modify the regular expression and add a type check in the match part of the rule. Only modules that match both the name and class simultaneously will be injected. We also need to pass some keywords similar to the injection of Routed Experts. The YAML rule is as follows:
```yaml
- match:
name: "^model\\.layers\\.(?!.*self_attn).*$" # Regular expression
class: torch.nn.Linear # Only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # Optimized kernel on quantized data types
kwargs:
generate_device: "cuda"
generate_op: "QuantizedLinearMarlin"
```
## Injection of Modules with Pre-calculated Buffers
To avoid occupying resources when initializing the injected original model, we use torchs meta device to initialize the original model. The RoPE module pre-calculates some buffers during initialization, but no calculations are performed when using the meta device. Therefore, we need to compensate for the calculation of the buffer when loading the model. Simply, we inject a custom module into the rotary embedding module, which performs pre-calculation during loading. The YAML rule is as follows:
```yaml
- match:
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
```
## Specifying Running Devices for Modules
Finally, we set a fallback basic attribute generate_device for all modules:
```yaml
- match:
name: "^model\\.layers\\..*\\.|^lm_head"
replace:
class: "default"
kwargs:
generate_device: "cuda"
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
```
Through these two rules, we place all previously unmatched layers (and their submodules) and lm_head on cuda, and the embedding on cpu. Note that the properties of a module will be determined by the first rule it matches. For example, if you later set a new replace.kwargs.generate_device in an injected module, the device set earlier will take precedence. If your computer has multiple cards, you can also configure the model to multiple cards.
## Muti-GPU
If you have multiple GPUs, you can set the device for each module to different GPUs.
DeepseekV2-Chat got 60 layers, if we got 2 GPUs, we can allocate 30 layers to each GPU. Complete multi GPU rule examples [here](ktransformers/optimize/optimize_rules).
<p align="center">
<picture>
<img alt="Inject-Struction" src="../assets/multi_gpu.png" width=60%>
</picture>
</p>
First of all, for multi-GPU, we have to inject an new operator `KDeepseekV2Model`. And set division of the layers to different GPUs. For our case, we have to set the `transfer_map` in the `KDeepseekV2Model` operatoras as follows:
```yaml
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
transfer_map:
30: "cuda:1"
```
And we have to set the device for each module in the model.
For example, for `routed experts`, the yaml for one GPU is:
```yaml
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # Custom MoE kernel with expert parallelism
kwargs:
generate_device: "cuda:0"
generate_op: "MLPCUDAExperts"
out_device: "cuda:0"
recursive: False # Don't recursively inject submodules of this module
```
But for two GPUs, we need to set the device for each module in the model.
```yaml
# allcate 0-29 layerss out_device to cuda:0
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda:0"
recursive: False # don't recursively inject submodules of this module
# allocate 30-59 layerss out_device to cuda:1
- match:
name: "^model\\.layers\\.([345][0-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda:1"
recursive: False # don't recursively inject submodules of this module
```
For other modules, we can set the device in the same way.
## How to Write a New Operator and Inject into the Model
In this section, we will explain how to write an operator that can be injected, using the implementation of a new linear as an example.
First, all injectable operators need to inherit from the BaseInjectedModule class, which inherits some attributes required by our injection framework. Its initialization function needs to meet the following basic format:
```python
class LinearTorchInject(BaseInjectedModule):
def __init__(
self,
key: str,
gguf_loader: GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module = None,
generate_device: str = "cuda",
**kwargs,
):
super().__init__(key, gguf_loader, config, orig_module, generate_device, **kwargs)
```
If users have other parameters that need to be passed to this class, they can also be included in the init function and re-passed in the kwargs parameter in the yaml file. For example, if our operator wants to pass a parameter `my_param`, the init function can be written as:
```python
class LinearTorchInject(BaseInjectedModule):
def __init__(
self,
key: str,
gguf_loader: GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module = None,
generate_device: str = "cuda",
my_param: bool = True,
**kwargs,
):
super().__init__(key, gguf_loader, config, orig_module, generate_device, **kwargs)
self.my_param = my_param
```
Then our injection rule can be written as:
```yaml
- match:
name: "^model\\.layers\\..*$" # Regular expression matches the module name.
class: torch.nn.Linear # Type restrictions can be added.
replace:
class: ktransformers.operators.linear.LinearTorchInject # Inject module path
kwargs: # Extra parameters
generate_device: "cuda"
my_param: True
```
For the linear module, it is also necessary to read weights from a gguf file. We provide the `KLinearBase` class to help users read weights from gguf files. Users only need to inherit and implement the load, unload, and forward functions. Therefore, a fully injectable linear class would look like this:
```python
class LinearTorchInject(BaseInjectedModule, KLinearBase):
def __init__(
self,
key: str,
gguf_loader: GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module = None,
generate_device: str = "cuda",
**kwargs,
):
super().__init__(key, gguf_loader, config, orig_module, generate_device, **kwargs)
KLinearBase.__init__(self)
self.has_bias = False
self.dtype = torch.get_default_dtype()
self.w = None
self.has_bias = False
def load(self, w: dict | nn.Parameter | tuple | None = None, device: str|None = None):
if device is None: device = self.device
if w is None: w = self.load_weight(device=device)
if isinstance(w, nn.Parameter):
self.w = w.to(dtype=self.dtype).view(self.out_features, self.in_features).T
self.has_bias = False
elif isinstance(w, tuple):
self.w = w[0].to(dtype=self.dtype).view(self.out_features, self.in_features).T
self.bias = w[1].to(dtype=self.dtype)
self.has_bias = True
else:
raise ValueError("Invalid weight type")
self.w = self.w.to(device)
if self.has_bias:
self.bias = self.bias.to(device)
def unload(self):
if self.w is not None:
self.w = None
if self.has_bias:
self.bias = None
def forward(self, x: torch.Tensor) -> torch.Tensor:
dtype = x.dtype
out_device = x.device
x = x.to(device=self.device, dtype=self.dtype)
x = x @ self.w
if self.has_bias:
x = x + self.bias
x = x.to(dtype=dtype, device=out_device)
return x
```
Note that the `self.load_weight` function is provided by the KLinearBase class to help users load weights from a gguf file into the module. The implementation details of KLinearBase can be found on [GITHUB](https://github.com/kvcache-ai/ktransformers/blob/44f57270c9514d79fab224186d90ccf61059331a/ktransformers/operators/linear.py#L31).

View File

@ -1 +1 @@
__version__ = "0.1.1"
__version__ = "0.1.2"

View File

@ -22,14 +22,13 @@ option(LLAMA_AVX2 "llama: enable AVX2"
option(LLAMA_AVX512 "llama: enable AVX512" OFF)
option(LLAMA_AVX512_VBMI "llama: enable AVX512-VBMI" OFF)
option(LLAMA_AVX512_VNNI "llama: enable AVX512-VNNI" OFF)
option(LLAMA_AVX512_BF16 "llama: enable AVX512-BF16" OFF)
option(LLAMA_FMA "llama: enable FMA" OFF)
# in MSVC F16C is implied with AVX2/AVX512
if (NOT MSVC)
option(LLAMA_F16C "llama: enable F16C" OFF)
endif()
option(LLAMA_AVX512_FANCY_SIMD "llama: enable AVX512-VL, AVX512-BW, AVX512-DQ, AVX512-VNNI" OFF)
option(LLAMA_AVX512_BF16 "llama: enable AVX512-BF16" OFF)
# Architecture specific
# TODO: probably these flags need to be tweaked on some architectures

View File

@ -6,7 +6,7 @@ Author : chenht2022
Date : 2024-07-25 10:31:59
Version : 1.0.0
LastEditors : chenht2022
LastEditTime : 2024-07-25 10:32:51
LastEditTime : 2024-08-06 10:35:35
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
import os, sys
@ -15,15 +15,18 @@ sys.path.append(os.path.dirname(__file__) + '/../build')
import cpuinfer_ext
import torch
input_size = 16384
output_size = 5120
stride = 16
group_max_len = 1024
layer_num = 10
qlen = 1
CPUInfer = cpuinfer_ext.CPUInfer(64)
warm_up_iter = 1000
test_iter = 10000
def bench_linear(quant_mode: str):
with torch.inference_mode(mode=True):
input_size = 16384
output_size = 5120
stride = 16
layer_num = 10
CPUInfer = cpuinfer_ext.CPUInfer(64)
warm_up_iter = 1000
test_iter = 10000
hidden_type = 30 # ggml_type::GGML_TYPE_BF16
if quant_mode == "fp32":
@ -66,30 +69,37 @@ def bench_linear(quant_mode: str):
projs = []
for _ in range(layer_num):
proj = torch.randn((output_size, input_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
config = cpuinfer_ext.linear.LinearConfig(input_size, output_size, stride, proj.data_ptr(), proj_type, hidden_type)
config = cpuinfer_ext.linear.LinearConfig(input_size, output_size, stride, group_max_len, proj.data_ptr(), proj_type, hidden_type)
linear = cpuinfer_ext.linear.Linear(config)
projs.append(proj)
linears.append(linear)
input = torch.randn((layer_num, qlen, input_size), dtype=torch.bfloat16, device = "cuda").to("cpu").contiguous()
output = torch.empty((layer_num, qlen, output_size), dtype=torch.bfloat16, device = "cuda").to("cpu").contiguous()
# warm up
for i in range(warm_up_iter):
linear = linears[i % layer_num]
input = torch.randn((1, input_size), dtype=torch.bfloat16).contiguous()
output = torch.empty((1, output_size), dtype=torch.bfloat16).contiguous()
CPUInfer.submit(linear.forward, input.data_ptr(), output.data_ptr())
CPUInfer.submit(
linears[i % layer_num].forward(
qlen,
input[i % layer_num].data_ptr(),
output[i % layer_num].data_ptr()
)
)
CPUInfer.sync()
# test
total_time = 0
start = time.perf_counter()
for i in range(test_iter):
linear = linears[i % layer_num]
input = torch.randn((1, input_size), dtype=torch.bfloat16).contiguous()
output = torch.empty((1, output_size), dtype=torch.bfloat16).contiguous()
start = time.perf_counter()
CPUInfer.submit(linear.forward, input.data_ptr(), output.data_ptr())
CPUInfer.submit(
linears[i % layer_num].forward(
qlen,
input[i % layer_num].data_ptr(),
output[i % layer_num].data_ptr()
)
)
CPUInfer.sync()
end = time.perf_counter()
total_time += end - start
end = time.perf_counter()
total_time = end - start
print('Quant mode: ', quant_mode)
print('Time(s): ', total_time)
print('Iteration: ', test_iter)

View File

@ -14,14 +14,17 @@ import time
import torch
import torch.nn.quantized as nnq
scale, zero_point = 0.1, 0 # Adjust scale and zero_point based on your dataset
input_size = 16384
output_size = 5120
layer_num = 10
qlen = 1
warm_up_iter = 1000
test_iter = 10000
def bench_linear(quant_mode: str):
with torch.inference_mode(mode=True):
input_size = 16384
output_size = 5120
layer_num = 10
warm_up_iter = 1000
test_iter = 10000
if quant_mode == "fp32":
proj_type = torch.float32
bytes_per_elem = 4.000000
@ -41,37 +44,32 @@ def bench_linear(quant_mode: str):
for _ in range(layer_num):
proj = torch.randn((output_size, input_size), dtype = torch.float32, device = "cuda").to("cpu").contiguous()
if quant_mode == "qint8":
scale, zero_point = 0.1, 0 # Adjust scale and zero_point based on your dataset
proj_q = torch.quantize_per_tensor(proj, scale, zero_point, torch.qint8)
quantized_layer = nnq.Linear(input_size, output_size)
quantized_layer.set_weight_bias(proj_q, None)
projs.append(quantized_layer)
else:
projs.append(proj.to(proj_type))
input = torch.randn((layer_num, qlen, input_size), dtype=torch.bfloat16, device = "cuda").to("cpu").contiguous()
# warm up
for i in range(warm_up_iter):
input = torch.randn((1, input_size), dtype=torch.float32).contiguous()
if quant_mode == "qint8":
input_q = torch.quantize_per_tensor(input, scale, zero_point, torch.quint8)
quantized_layer = projs[i % layer_num]
t_output = quantized_layer(input_q)
if isinstance(projs[i % layer_num], nnq.Linear):
input_q = torch.quantize_per_tensor(input[i % layer_num].to(torch.float32), scale, zero_point, torch.quint8)
t_output = projs[i % layer_num](input_q)
else:
t_output = torch.mm(input.to(proj_type), projs[i % layer_num].t())
t_output = torch.mm(input[i % layer_num].to(proj_type), projs[i % layer_num].t())
# test
total_time = 0
start = time.perf_counter()
for i in range(test_iter):
input = torch.randn((1, input_size), dtype=torch.float32).contiguous()
start = time.perf_counter()
if quant_mode == "qint8":
input_q = torch.quantize_per_tensor(input, scale, zero_point, torch.quint8)
quantized_layer = projs[i % layer_num]
t_output = quantized_layer(input_q)
if isinstance(projs[i % layer_num], nnq.Linear):
input_q = torch.quantize_per_tensor(input[i % layer_num].to(torch.float32), scale, zero_point, torch.quint8)
t_output = projs[i % layer_num](input_q)
else:
t_output = torch.mm(input.to(proj_type), projs[i % layer_num].t())
end = time.perf_counter()
total_time += end - start
t_output = torch.mm(input[i % layer_num].to(proj_type), projs[i % layer_num].t())
end = time.perf_counter()
total_time = end - start
print('Quant mode: ', quant_mode)
print('Time(s): ', total_time)
print('Iteration: ', test_iter)

View File

@ -6,7 +6,7 @@ Author : chenht2022
Date : 2024-07-16 10:43:18
Version : 1.0.0
LastEditors : chenht2022
LastEditTime : 2024-07-25 10:32:55
LastEditTime : 2024-08-06 10:36:04
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
import os, sys
@ -15,15 +15,18 @@ sys.path.append(os.path.dirname(__file__) + '/../build')
import cpuinfer_ext
import torch
hidden_size = 5120
intermediate_size = 3072
stride = 16
group_max_len = 1024
layer_num = 10
qlen = 1
CPUInfer = cpuinfer_ext.CPUInfer(64)
warm_up_iter = 1000
test_iter = 10000
def bench_mlp(quant_mode: str):
with torch.inference_mode(mode=True):
hidden_size = 5120
intermediate_size = 3072
stride = 16
layer_num = 10
CPUInfer = cpuinfer_ext.CPUInfer(64)
warm_up_iter = 1000
test_iter = 10000
hidden_type = 30 # ggml_type::GGML_TYPE_BF16
if quant_mode == "fp32":
@ -93,32 +96,39 @@ def bench_mlp(quant_mode: str):
gate_proj = torch.randn((intermediate_size, hidden_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
up_proj = torch.randn((intermediate_size, hidden_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
down_proj = torch.randn((hidden_size, intermediate_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
config = cpuinfer_ext.mlp.MLPConfig(hidden_size, intermediate_size, stride, gate_proj.data_ptr(), up_proj.data_ptr(), down_proj.data_ptr(), gate_type, up_type, down_type, hidden_type)
config = cpuinfer_ext.mlp.MLPConfig(hidden_size, intermediate_size, stride, group_max_len, gate_proj.data_ptr(), up_proj.data_ptr(), down_proj.data_ptr(), gate_type, up_type, down_type, hidden_type)
mlp = cpuinfer_ext.mlp.MLP(config)
gate_projs.append(gate_proj)
up_projs.append(up_proj)
down_projs.append(down_proj)
mlps.append(mlp)
input = torch.randn((layer_num, qlen, hidden_size), dtype=torch.bfloat16, device = "cuda").to("cpu").contiguous()
output = torch.empty((layer_num, qlen, hidden_size), dtype=torch.bfloat16, device = "cuda").to("cpu").contiguous()
# warm up
for i in range(warm_up_iter):
mlp = mlps[i % layer_num]
input = torch.randn((1, hidden_size), dtype=torch.bfloat16).contiguous()
output = torch.empty((1, hidden_size), dtype=torch.bfloat16).contiguous()
CPUInfer.submit(mlp.forward, input.data_ptr(), output.data_ptr())
CPUInfer.submit(
mlps[i % layer_num].forward(
qlen,
input[i % layer_num].data_ptr(),
output[i % layer_num].data_ptr()
)
)
CPUInfer.sync()
# test
total_time = 0
start = time.perf_counter()
for i in range(test_iter):
mlp = mlps[i % layer_num]
input = torch.randn((1, hidden_size), dtype=torch.bfloat16).contiguous()
output = torch.empty((1, hidden_size), dtype=torch.bfloat16).contiguous()
start = time.perf_counter()
CPUInfer.submit(mlp.forward, input.data_ptr(), output.data_ptr())
CPUInfer.submit(
mlps[i % layer_num].forward(
qlen,
input[i % layer_num].data_ptr(),
output[i % layer_num].data_ptr()
)
)
CPUInfer.sync()
end = time.perf_counter()
total_time += end - start
end = time.perf_counter()
total_time = end - start
print('Quant mode: ', quant_mode)
print('Time(s): ', total_time)
print('Iteration: ', test_iter)

View File

@ -14,17 +14,38 @@ import time
import torch
import torch.nn.quantized as nnq
scale, zero_point = 0.1, 0 # Adjust scale and zero_point based on your dataset
hidden_size = 5120
intermediate_size = 3072
layer_num = 10
qlen = 1
warm_up_iter = 1000
test_iter = 10000
def act_fn(x):
return x / (1.0 + torch.exp(-x))
def mlp_torch(input, gate_proj, up_proj, down_proj):
if isinstance(gate_proj, nnq.Linear):
input_q = torch.quantize_per_tensor(input.to(torch.float32), scale, zero_point, torch.quint8)
gate_buf = gate_proj(input_q)
up_buf = up_proj(input_q)
gate_buf = gate_buf.dequantize()
up_buf = up_buf.dequantize()
intermediate = act_fn(gate_buf) * up_buf
intermediate_q = torch.quantize_per_tensor(intermediate, scale, zero_point, torch.quint8)
expert_output = down_proj(intermediate_q)
ret = expert_output.dequantize()
else:
gate_buf = torch.mm(input.to(gate_proj.dtype), gate_proj.t())
up_buf = torch.mm(input.to(up_proj.dtype), up_proj.t())
intermediate = act_fn(gate_buf) * up_buf
ret = torch.mm(intermediate.to(down_proj.dtype), down_proj.t())
return ret
def bench_mlp(quant_mode: str):
with torch.inference_mode(mode=True):
hidden_size = 5120
intermediate_size = 3072
layer_num = 10
warm_up_iter = 1000
test_iter = 10000
if quant_mode == "fp32":
proj_type = torch.float32
bytes_per_elem = 4.000000
@ -48,7 +69,6 @@ def bench_mlp(quant_mode: str):
up_proj = torch.randn((intermediate_size, hidden_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
down_proj = torch.randn((hidden_size, intermediate_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
if quant_mode == "qint8":
scale, zero_point = 0.1, 0 # Adjust scale and zero_point based on your dataset
gate_proj_q = torch.quantize_per_tensor(gate_proj, scale, zero_point, torch.qint8)
quantized_gate = nnq.Linear(hidden_size, intermediate_size)
quantized_gate.set_weight_bias(gate_proj_q, None)
@ -65,58 +85,18 @@ def bench_mlp(quant_mode: str):
gate_projs.append(gate_proj.to(proj_type))
up_projs.append(up_proj.to(proj_type))
down_projs.append(down_proj.to(proj_type))
input = torch.randn((layer_num, qlen, hidden_size), dtype=torch.bfloat16, device = "cuda").to("cpu").contiguous()
# warm up
for i in range(warm_up_iter):
input = torch.randn((1, hidden_size), dtype=torch.float32).contiguous()
if quant_mode == "qint8":
input_q = torch.quantize_per_tensor(input, scale, zero_point, torch.quint8)
quantized_gate = gate_projs[i % layer_num]
gate_buf = quantized_gate(input_q)
quantized_up = up_projs[i % layer_num]
up_buf = quantized_gate(input_q)
gate_buf = gate_buf.dequantize()
up_buf = up_buf.dequantize()
intermediate = act_fn(gate_buf) * up_buf
intermediate_q = torch.quantize_per_tensor(intermediate, scale, zero_point, torch.quint8)
quantized_down = down_projs[i % layer_num]
t_output = quantized_down(intermediate_q)
else:
gate_proj = gate_projs[i%layer_num]
up_proj = up_projs[i%layer_num]
down_proj = down_projs[i%layer_num]
gate_buf = torch.mm(input.to(proj_type), gate_proj.t())
up_buf = torch.mm(input.to(proj_type), up_proj.t())
intermediate = act_fn(gate_buf) * up_buf
t_output = torch.mm(intermediate.to(proj_type), down_proj.t())
mlp_torch(input[i % layer_num], gate_projs[i % layer_num], up_projs[i % layer_num], down_projs[i % layer_num])
# test
total_time = 0
start = time.perf_counter()
for i in range(test_iter):
input = torch.randn((1, hidden_size), dtype=torch.float32).contiguous()
start = time.perf_counter()
if quant_mode == "qint8":
input_q = torch.quantize_per_tensor(input, scale, zero_point, torch.quint8)
quantized_gate = gate_projs[i % layer_num]
gate_buf = quantized_gate(input_q)
quantized_up = up_projs[i % layer_num]
up_buf = quantized_gate(input_q)
gate_buf = gate_buf.dequantize()
up_buf = up_buf.dequantize()
intermediate = act_fn(gate_buf) * up_buf
intermediate_q = torch.quantize_per_tensor(intermediate, scale, zero_point, torch.quint8)
quantized_down = down_projs[i % layer_num]
t_output = quantized_down(intermediate_q)
else:
gate_proj = gate_projs[i%layer_num]
up_proj = up_projs[i%layer_num]
down_proj = down_projs[i%layer_num]
gate_buf = torch.mm(input.to(proj_type), gate_proj.t())
up_buf = torch.mm(input.to(proj_type), up_proj.t())
intermediate = act_fn(gate_buf) * up_buf
t_output = torch.mm(intermediate.to(proj_type), down_proj.t())
end = time.perf_counter()
total_time += end - start
mlp_torch(input[i % layer_num], gate_projs[i % layer_num], up_projs[i % layer_num], down_projs[i % layer_num])
end = time.perf_counter()
total_time = end - start
print('Quant mode: ', quant_mode)
print('Time(s): ', total_time)
print('Iteration: ', test_iter)

View File

@ -6,7 +6,7 @@ Author : chenht2022
Date : 2024-07-25 10:32:05
Version : 1.0.0
LastEditors : chenht2022
LastEditTime : 2024-07-25 10:33:00
LastEditTime : 2024-08-06 10:41:28
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
import os, sys
@ -15,21 +15,21 @@ sys.path.append(os.path.dirname(__file__) + '/../build')
import cpuinfer_ext
import torch
expert_num = 160
hidden_size = 5120
intermediate_size = 1536
stride = 16
group_min_len = 10
group_max_len = 1024
n_routed_experts = 6
layer_num = 10
qlen = 1
CPUInfer = cpuinfer_ext.CPUInfer(64)
warm_up_iter = 1000
test_iter = 10000
def bench_moe(quant_mode: str):
with torch.inference_mode(mode=True):
expert_num = 10
hidden_size = 5120
intermediate_size = 1536
stride = 16
group_min_len = 10
group_max_len = 1024
n_routed_experts = 6
layer_num = 10
qlen = 1
CPUInfer = cpuinfer_ext.CPUInfer(64)
warm_up_iter = 1000
test_iter = 10000
hidden_type = 30 # ggml_type::GGML_TYPE_BF16
if quant_mode == "fp32":
gate_type = 0 # ggml_type::GGML_TYPE_F32
@ -104,32 +104,38 @@ def bench_moe(quant_mode: str):
up_projs.append(up_proj)
down_projs.append(down_proj)
moes.append(moe)
expert_ids = torch.randint(0, expert_num, (layer_num, qlen, n_routed_experts), dtype=torch.int64, device = "cuda").to("cpu").contiguous()
expert_ids = torch.stack([torch.stack([torch.randperm(expert_num, dtype=torch.int64, device = "cuda")[:n_routed_experts] for _ in range(qlen)]) for _ in range(layer_num)]).to("cpu").contiguous()
weights = torch.rand((layer_num, qlen, n_routed_experts), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
input = torch.randn((layer_num, qlen, hidden_size), dtype=torch.bfloat16, device = "cuda").to("cpu").contiguous()
output = torch.empty((layer_num, qlen, hidden_size), dtype=torch.bfloat16, device = "cuda").to("cpu").contiguous()
# warm up
for i in range(warm_up_iter):
CPUInfer.submit(moes[i % layer_num].forward,
qlen,
n_routed_experts,
expert_ids[i % layer_num].data_ptr(),
weights[i % layer_num].data_ptr(),
input[i % layer_num].data_ptr(),
output[i % layer_num].data_ptr())
CPUInfer.submit(
moes[i % layer_num].forward(
qlen,
n_routed_experts,
expert_ids[i % layer_num].data_ptr(),
weights[i % layer_num].data_ptr(),
input[i % layer_num].data_ptr(),
output[i % layer_num].data_ptr()
)
)
CPUInfer.sync()
# test
start = time.perf_counter()
for i in range(test_iter):
CPUInfer.submit(moes[i % layer_num].forward,
qlen,
n_routed_experts,
expert_ids[i % layer_num].data_ptr(),
weights[i % layer_num].data_ptr(),
input[i % layer_num].data_ptr(),
output[i % layer_num].data_ptr())
CPUInfer.submit(
moes[i % layer_num].forward(
qlen,
n_routed_experts,
expert_ids[i % layer_num].data_ptr(),
weights[i % layer_num].data_ptr(),
input[i % layer_num].data_ptr(),
output[i % layer_num].data_ptr()
)
)
CPUInfer.sync()
end = time.perf_counter()
total_time = end - start

View File

@ -14,19 +14,71 @@ import time
import torch
import torch.nn.quantized as nnq
scale, zero_point = 0.1, 0 # Adjust scale and zero_point based on your dataset
expert_num = 160
hidden_size = 5120
intermediate_size = 1536
n_routed_experts = 6
layer_num = 10
qlen = 1
warm_up_iter = 1000
test_iter = 10000
def act_fn(x):
return x / (1.0 + torch.exp(-x))
def mlp_torch(input, gate_proj, up_proj, down_proj):
if isinstance(gate_proj, nnq.Linear):
input_q = torch.quantize_per_tensor(input.to(torch.float32), scale, zero_point, torch.quint8)
gate_buf = gate_proj(input_q)
up_buf = up_proj(input_q)
gate_buf = gate_buf.dequantize()
up_buf = up_buf.dequantize()
intermediate = act_fn(gate_buf) * up_buf
intermediate_q = torch.quantize_per_tensor(intermediate, scale, zero_point, torch.quint8)
expert_output = down_proj(intermediate_q)
ret = expert_output.dequantize()
else:
gate_buf = torch.mm(input.to(gate_proj.dtype), gate_proj.t())
up_buf = torch.mm(input.to(up_proj.dtype), up_proj.t())
intermediate = act_fn(gate_buf) * up_buf
ret = torch.mm(intermediate.to(down_proj.dtype), down_proj.t())
return ret
def moe_torch(input, expert_ids, weights, gate_proj, up_proj, down_proj):
cnts = expert_ids.new_zeros((expert_ids.shape[0], expert_num))
cnts.scatter_(1, expert_ids, 1)
tokens_per_expert = cnts.sum(dim=0)
idxs = expert_ids.view(-1).argsort()
sorted_tokens = input[idxs // expert_ids.shape[1]]
outputs = []
start_idx = 0
for i, num_tokens in enumerate(tokens_per_expert):
end_idx = start_idx + num_tokens
if num_tokens == 0:
continue
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
expert_out = mlp_torch(tokens_for_this_expert, gate_proj[i], up_proj[i], down_proj[i])
outputs.append(expert_out)
start_idx = end_idx
outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
new_x = torch.empty_like(outs)
new_x[idxs] = outs
t_output = (
new_x.view(*expert_ids.shape, -1)
.type(weights.dtype)
.mul_(weights.unsqueeze(dim=-1))
.sum(dim=1)
.type(new_x.dtype)
)
return t_output
def bench_moe(quant_mode: str):
with torch.inference_mode(mode=True):
expert_num = 10
hidden_size = 5120
intermediate_size = 1536
n_routed_experts = 6
layer_num = 10
warm_up_iter = 1000
test_iter = 10000
if quant_mode == "fp32":
proj_type = torch.float32
bytes_per_elem = 4.000000
@ -50,7 +102,6 @@ def bench_moe(quant_mode: str):
up_proj = torch.randn((expert_num, intermediate_size, hidden_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
down_proj = torch.randn((expert_num, hidden_size, intermediate_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
if quant_mode == "qint8":
scale, zero_point = 0.1, 0 # Adjust scale and zero_point based on your dataset
quantized_gate_proj = []
quantized_up_proj = []
quantized_down_proj = []
@ -74,82 +125,20 @@ def bench_moe(quant_mode: str):
gate_projs.append(gate_proj.to(proj_type))
up_projs.append(up_proj.to(proj_type))
down_projs.append(down_proj.to(proj_type))
expert_ids = torch.stack([torch.stack([torch.randperm(expert_num, dtype=torch.int64, device = "cuda")[:n_routed_experts] for _ in range(qlen)]) for _ in range(layer_num)]).to("cpu").contiguous()
weights = torch.rand((layer_num, qlen, n_routed_experts), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
input = torch.randn((layer_num, qlen, hidden_size), dtype=torch.bfloat16, device = "cuda").to("cpu").contiguous()
# warm up
for i in range(warm_up_iter):
expert_ids = torch.randint(0, expert_num, (n_routed_experts,), dtype=torch.int64).contiguous()
weights = torch.rand((n_routed_experts,), dtype=torch.float32).contiguous()
input = torch.randn((1, hidden_size), dtype=torch.float32).contiguous()
if quant_mode == "qint8":
input_q = torch.quantize_per_tensor(input, scale, zero_point, torch.quint8)
t_output = torch.zeros((1, hidden_size), dtype=torch.float32).contiguous()
gate_proj = gate_projs[i%layer_num]
up_proj = up_projs[i%layer_num]
down_proj = down_projs[i%layer_num]
for i, expert_id in enumerate(expert_ids):
quantized_gate = gate_proj[expert_id]
gate_buf = quantized_gate(input_q)
quantized_up = up_proj[expert_id]
up_buf = quantized_up(input_q)
gate_buf = gate_buf.dequantize()
up_buf = up_buf.dequantize()
intermediate = act_fn(gate_buf) * up_buf
intermediate_q = torch.quantize_per_tensor(intermediate, scale, zero_point, torch.quint8)
quantized_down = down_proj[expert_id]
expert_output = quantized_down(intermediate_q)
expert_output = expert_output.dequantize()
t_output += weights[i] * expert_output
else:
t_output = torch.zeros((1, hidden_size), dtype=proj_type).contiguous()
gate_proj = gate_projs[i%layer_num]
up_proj = up_projs[i%layer_num]
down_proj = down_projs[i%layer_num]
for i, expert_id in enumerate(expert_ids):
gate_buf = torch.mm(input.to(proj_type), gate_proj[expert_id].t())
up_buf = torch.mm(input.to(proj_type), up_proj[expert_id].t())
intermediate = act_fn(gate_buf) * up_buf
expert_output = torch.mm(intermediate.to(proj_type), down_proj[expert_id].t())
t_output += weights[i] * expert_output
moe_torch(input[i % layer_num], expert_ids[i % layer_num], weights[i % layer_num], gate_projs[i % layer_num], up_projs[i % layer_num], down_projs[i % layer_num])
# test
total_time = 0
start = time.perf_counter()
for i in range(test_iter):
expert_ids = torch.randint(0, expert_num, (n_routed_experts,), dtype=torch.int64).contiguous()
weights = torch.rand((n_routed_experts,), dtype=torch.float32).contiguous()
input = torch.randn((1, hidden_size), dtype=torch.float32).contiguous()
start = time.perf_counter()
if quant_mode == "qint8":
input_q = torch.quantize_per_tensor(input, scale, zero_point, torch.quint8)
t_output = torch.zeros((1, hidden_size), dtype=torch.float32).contiguous()
gate_proj = gate_projs[i%layer_num]
up_proj = up_projs[i%layer_num]
down_proj = down_projs[i%layer_num]
for i, expert_id in enumerate(expert_ids):
quantized_gate = gate_proj[expert_id]
gate_buf = quantized_gate(input_q)
quantized_up = up_proj[expert_id]
up_buf = quantized_up(input_q)
gate_buf = gate_buf.dequantize()
up_buf = up_buf.dequantize()
intermediate = act_fn(gate_buf) * up_buf
intermediate_q = torch.quantize_per_tensor(intermediate, scale, zero_point, torch.quint8)
quantized_down = down_proj[expert_id]
expert_output = quantized_down(intermediate_q)
expert_output = expert_output.dequantize()
t_output += weights[i] * expert_output
else:
t_output = torch.zeros((1, hidden_size), dtype=proj_type).contiguous()
gate_proj = gate_projs[i%layer_num]
up_proj = up_projs[i%layer_num]
down_proj = down_projs[i%layer_num]
for i, expert_id in enumerate(expert_ids):
gate_buf = torch.mm(input.to(proj_type), gate_proj[expert_id].t())
up_buf = torch.mm(input.to(proj_type), up_proj[expert_id].t())
intermediate = act_fn(gate_buf) * up_buf
expert_output = torch.mm(intermediate.to(proj_type), down_proj[expert_id].t())
t_output += weights[i] * expert_output
end = time.perf_counter()
total_time += end - start
moe_torch(input[i % layer_num], expert_ids[i % layer_num], weights[i % layer_num], gate_projs[i % layer_num], up_projs[i % layer_num], down_projs[i % layer_num])
end = time.perf_counter()
total_time = end - start
print('Quant mode: ', quant_mode)
print('Time(s): ', total_time)
print('Iteration: ', test_iter)

View File

@ -1,12 +1,12 @@
/**
* @Description :
* @Description :
* @Author : chenht2022
* @Date : 2024-07-16 10:43:18
* @Version : 1.0.0
* @LastEditors : chenht2022
* @LastEditTime : 2024-07-25 10:33:42
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
* @LastEditors : chenht2022
* @LastEditTime : 2024-08-07 09:47:43
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
#ifndef CPUINFER_CPUINFER_H
#define CPUINFER_CPUINFER_H
@ -17,6 +17,7 @@
#include <queue>
#include <thread>
#include <vector>
#include "cuda_runtime.h"
#include "backend.h"
#include "task_queue.h"
@ -39,16 +40,39 @@ class CPUInfer {
}
template <typename Func, typename Obj, typename... Args>
void submit(Func f, Obj* obj, Args... args) {
void enqueue(Func f, Obj* obj, Args... args) {
task_queue_->enqueue([=]() {
std::invoke(f, *obj, args..., backend_);
});
}
void submit(std::pair<intptr_t, intptr_t> params) {
void (*func)(void*) = (void (*)(void*))params.first;
void* args = (void*)params.second;
*((CPUInfer**)args) = this;
func(args);
}
void sync() {
task_queue_->sync();
}
void submit_with_cuda_stream(intptr_t user_cuda_stream, std::pair<intptr_t, intptr_t> params) {
void (*func)(void*) = (void (*)(void*))params.first;
void* args = (void*)params.second;
*((CPUInfer**)args) = this;
cudaLaunchHostFunc((cudaStream_t)user_cuda_stream, (cudaHostFn_t)func, args);
}
static void sync_(void* cpu_infer_ptr) {
CPUInfer* cpuinfer = (CPUInfer*)cpu_infer_ptr;
cpuinfer->sync();
}
void sync_with_cuda_stream(intptr_t user_cuda_stream) {
cudaLaunchHostFunc((cudaStream_t)user_cuda_stream, (cudaHostFn_t)&sync_, (void*)this);
}
public:
Backend* backend_;
TaskQueue* task_queue_;

View File

@ -4,7 +4,7 @@
* @Date : 2024-07-16 10:43:18
* @Version : 1.0.0
* @LastEditors : chenxl
* @LastEditTime : 2024-08-08 04:23:51
* @LastEditTime : 2024-08-12 12:28:25
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
#ifndef CPUINFER_TASKQUEUE_H

View File

@ -3,8 +3,8 @@
* @Author : Azure-Tang
* @Date : 2024-07-25 13:38:30
* @Version : 1.0.0
* @LastEditors : Azure
* @LastEditTime : 2024-07-26 08:36:03
* @LastEditors : kkk1nak0
* @LastEditTime : 2024-08-12 03:05:04
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
@ -23,8 +23,14 @@ PYBIND11_MODULE(KTransformersOps, m) {
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q6_k", &dequantize_q6_k, "Function to dequantize q6_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q5_k", &dequantize_q5_k, "Function to dequantize q5_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q4_k", &dequantize_q4_k, "Function to dequantize q4_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q3_k", &dequantize_q3_k, "Function to dequantize q3_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q2_k", &dequantize_q2_k, "Function to dequantize q2_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("gptq_marlin_gemm", &gptq_marlin_gemm, "Function to perform GEMM using Marlin quantization.",
py::arg("a"), py::arg("b_q_weight"), py::arg("b_scales"), py::arg("g_idx"),
py::arg("perm"), py::arg("workspace"), py::arg("num_bits"), py::arg("size_m"),

View File

@ -12,14 +12,22 @@ int test(){
}
torch::Tensor dequantize_q6_k(torch::Tensor data, int blk_size, torch::Device device);
torch::Tensor dequantize_q5_k(torch::Tensor data, int blk_size, torch::Device device);
torch::Tensor dequantize_q2_k(torch::Tensor data, int blk_size, torch::Device device);
PYBIND11_MODULE(cudaops, m) {
m.def("dequantize_q8_0", &dequantize_q8_0, "Function to dequantize q8_0 data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q6_k", &dequantize_q6_k, "Function to dequantize q6_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q5_k", &dequantize_q5_k, "Function to dequantize q5_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q4_k", &dequantize_q4_k, "Function to dequantize q4_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q3_k", &dequantize_q3_k, "Function to dequantize q3_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q2_k", &dequantize_q2_k, "Function to dequantize q2_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("test", &test, "Function to test.");
}

View File

@ -1,39 +0,0 @@
#include <cuda_fp16.h>
__device__ float ggml_compute_fp16_to_fp32(uint16_t h) {
return __uint2float_rd(h);
}
static inline float ggml_compute_fp16_to_fp32(uint16_t h) {
uint16_t tmp;
memcpy(&tmp, &h, sizeof(ggml_fp16_t));
return (float)tmp;
}
// define the global table for fp16 to fp32 conversion
__device__ float ggml_table_f32_f16[1 << 16];
// CUDA Kernel to init the table
__global__ void init_fp16_to_fp32_table() {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
for (auto blk_id = idx; blk_id<(1 << 16); blk_id+=blockDim.x * gridDim.x){
ggml_table_f32_f16[blk_id] = GGML_COMPUTE_FP16_TO_FP32(blk_id);
}
}
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
extern __device__ float ggml_table_f32_f16[1 << 16]; // Declare as __device__ if used within device code
// This version of the function is designed to be called from within a CUDA kernel
#if !defined(GGML_FP16_TO_FP32)
__device__ float ggml_lookup_fp16_to_fp32(uint16_t f) {
return ggml_table_f32_f16[f];
}
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
#endif

View File

@ -3,8 +3,8 @@
* @Author : Azure-Tang, Boxin Zhang
* @Date : 2024-07-25 13:38:30
* @Version : 1.0.0
* @LastEditors : Azure
* @LastEditTime : 2024-07-26 11:58:50
* @LastEditors : kkk1nak0
* @LastEditTime : 2024-08-12 04:18:04
* Adapted from https://github.com/ggerganov/ggml/blob/fca1caafea7de9fbd7efc733b9818f9cf2da3050/src/ggml-quants.c
* Copyright (c) 2023-2024 The ggml authors
* Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
@ -14,6 +14,7 @@
#include <torch/extension.h>
#include <torch/torch.h>
#include <cstdint>
#include <c10/cuda/CUDAGuard.h>
__global__ void dequantize_q8_0_kernel(float* output, const float* scales, const int8_t* qs, int num_blocks, int blk_size) {
int global_idx = blockIdx.x * blockDim.x + threadIdx.x;
@ -35,6 +36,97 @@ __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t * __restrict_
}
}
__global__ void dequantize_q2_k_kernel(int8_t* data, float* output, int blk_size, int num_blocks) {
int global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (auto block_id=global_idx; block_id<num_blocks; block_id+= blockDim.x * gridDim.x){
float* __restrict__ output_blk = (float*)(output + block_id * 256);
const float d = __half2float(*(reinterpret_cast<half*>(data + block_id * blk_size + 80)));
const float min = __half2float(*(reinterpret_cast<half*>(data + block_id * blk_size + 82)));
const uint8_t * __restrict__ q = (uint8_t*)(data + block_id * blk_size + 16);
int is = 0;
float dl, ml;
for (int n = 0; n < 256; n += 128) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
uint8_t* scales = (uint8_t*)(data + block_id * blk_size + (is++));
uint8_t sc = *scales;
dl = d * (sc & 0xF); ml = min * (sc >> 4);
for (int l = 0; l < 16; ++l) *output_blk++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
scales = (uint8_t*)(data + block_id * blk_size + (is++));
sc = *scales;
dl = d * (sc & 0xF); ml = min * (sc >> 4);
for (int l = 0; l < 16; ++l) *output_blk++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
shift += 2;
}
q += 32;
}
}
}
__global__ void dequantize_q3_k_kernel(int8_t* data, float* output, int blk_size, int num_blocks) {
int global_idx = blockIdx.x * blockDim.x + threadIdx.x;
const uint32_t kmask1 = 0x03030303;
const uint32_t kmask2 = 0x0f0f0f0f;
for (auto block_id=global_idx; block_id<num_blocks; block_id+= blockDim.x * gridDim.x){
float* __restrict__ output_blk = (float*)(output + block_id * 256);
uint32_t aux[4];
const int8_t * scales = (const int8_t*)aux;
const float d_all = __half2float(*(reinterpret_cast<half*>(data + block_id * blk_size + 108)));
const uint8_t * __restrict__ q = (uint8_t*)(data + block_id * blk_size + 32);
const uint8_t * __restrict__ hm = (uint8_t*)(data + block_id * blk_size + 0);
uint8_t m = 1;
uint8_t* block_scales = (uint8_t*)(data + block_id * blk_size + 96);
for (int i = 0; i < 3; i++) {
aux[i] = 0;
for (int j = 0; j < 4; j++) {
aux[i] |= ((uint32_t)block_scales[i * 4 + j]) << (j * 8);
}
}
uint32_t tmp = aux[2];
aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
int is = 0;
float dl;
for (int n = 0; n < 256; n += 128) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
dl = d_all * (scales[is++] - 32);
for (int l = 0; l < 16; ++l) {
*output_blk++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
}
dl = d_all * (scales[is++] - 32);
for (int l = 0; l < 16; ++l) {
*output_blk++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
}
shift += 2;
m <<= 1;
}
q += 32;
}
}
}
__global__ void dequantize_q4_k_kernel(int8_t* data, float* output, int blk_size, int num_blocks) {
int global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (auto block_id=global_idx; block_id<num_blocks;block_id+=blockDim.x * gridDim.x){
@ -59,6 +151,35 @@ __global__ void dequantize_q4_k_kernel(int8_t* data, float* output, int blk_size
}
}
__global__ void dequantize_q5_k_kernel(int8_t* data, float* output, int blk_size, int num_blocks) {
int global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (auto block_id=global_idx; block_id<num_blocks; block_id+= blockDim.x * gridDim.x){
float* __restrict__ output_blk = (float*)(output + block_id * 256);
const float d = __half2float(*(reinterpret_cast<half*>(data + block_id * blk_size + 0)));
const float min = __half2float(*(reinterpret_cast<half*>(data + block_id * blk_size + 2)));
const uint8_t * __restrict__ qh = (uint8_t*)(data + block_id * blk_size + 16);
const uint8_t * __restrict__ ql = (uint8_t*)(data + block_id * blk_size + 48);
int is = 0;
uint8_t sc, m;
uint8_t u1 = 1, u2 = 2;
uint8_t* scales = (uint8_t*)(data + block_id * blk_size + 4);
for (int j = 0; j < 256; j += 64) {
get_scale_min_k4(is + 0, scales, &sc, &m);
const float d1 = d * sc; const float m1 = min * m;
get_scale_min_k4(is + 1, scales, &sc, &m);
const float d2 = d * sc; const float m2 = min * m;
for (int l = 0; l < 32; ++l) *output_blk++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
for (int l = 0; l < 32; ++l) *output_blk++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
ql += 32; is += 2;
u1 <<= 2; u2 <<= 2;
}
}
}
__global__ void dequantize_q6_k_kernel(int8_t* data, float* output, int blk_size, int num_blocks) {
int global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (auto block_id=global_idx; block_id<num_blocks;block_id+=blockDim.x * gridDim.x){
@ -94,6 +215,7 @@ __global__ void dequantize_q6_k_kernel(int8_t* data, float* output, int blk_size
torch::Tensor dequantize_q8_0(torch::Tensor data, int blk_size, torch::Device device) {
int num_blocks = data.numel() / blk_size;
const at::cuda::OptionalCUDAGuard device_guard(device);
// create gpu
auto options_scales = torch::TensorOptions().dtype(torch::kFloat32).device(device).memory_format(torch::MemoryFormat::Contiguous);
auto options_qs = torch::TensorOptions().dtype(torch::kInt8).device(device).memory_format(torch::MemoryFormat::Contiguous);
@ -128,6 +250,7 @@ torch::Tensor dequantize_q6_k(torch::Tensor data, int blk_size, torch::Device de
// data.numel%blk_size should be 0, else raise err
int num_blocks = data.numel() / blk_size;
const at::cuda::OptionalCUDAGuard device_guard(device);
auto options = torch::TensorOptions().dtype(torch::kInt8).device(device).memory_format(torch::MemoryFormat::Contiguous);
auto data_gpu = torch::empty({data.numel()}, options);
@ -144,9 +267,28 @@ torch::Tensor dequantize_q6_k(torch::Tensor data, int blk_size, torch::Device de
return output;
}
torch::Tensor dequantize_q5_k(torch::Tensor data, int blk_size, torch::Device device) {
int num_blocks = data.numel() / blk_size;
auto options = torch::TensorOptions().dtype(torch::kInt8).device(device).memory_format(torch::MemoryFormat::Contiguous);
auto data_gpu = torch::empty({data.numel()}, options);
data_gpu.copy_(data, false);
// Create output tensor
auto output = torch::zeros({num_blocks, 256}, torch::dtype(torch::kFloat32).device(device));
// Launch kernel
dequantize_q5_k_kernel<<< 512, 256 >>>(data_gpu.data_ptr<int8_t>(), output.data_ptr<float>(), blk_size, num_blocks);
cudaDeviceSynchronize();
return output;
}
torch::Tensor dequantize_q4_k(torch::Tensor data, int blk_size, torch::Device device) {
// data.numel%blk_size should be 0, else raise err
int num_blocks = data.numel() / blk_size;
const at::cuda::OptionalCUDAGuard device_guard(device);
auto options = torch::TensorOptions().dtype(torch::kInt8).device(device).memory_format(torch::MemoryFormat::Contiguous);
auto data_gpu = torch::empty({data.numel()}, options);
@ -162,3 +304,39 @@ torch::Tensor dequantize_q4_k(torch::Tensor data, int blk_size, torch::Device de
cudaDeviceSynchronize();
return output;
}
torch::Tensor dequantize_q3_k(torch::Tensor data, int blk_size, torch::Device device) {
int num_blocks = data.numel() / blk_size;
auto options = torch::TensorOptions().dtype(torch::kInt8).device(device).memory_format(torch::MemoryFormat::Contiguous);
auto data_gpu = torch::empty({data.numel()}, options);
data_gpu.copy_(data, false);
// Create output tensor
auto output = torch::zeros({num_blocks, 256}, torch::dtype(torch::kFloat32).device(device));
// Launch kernel
dequantize_q3_k_kernel<<< 512, 256 >>>(data_gpu.data_ptr<int8_t>(), output.data_ptr<float>(), blk_size, num_blocks);
cudaDeviceSynchronize();
return output;
}
torch::Tensor dequantize_q2_k(torch::Tensor data, int blk_size, torch::Device device) {
int num_blocks = data.numel() / blk_size;
auto options = torch::TensorOptions().dtype(torch::kInt8).device(device).memory_format(torch::MemoryFormat::Contiguous);
auto data_gpu = torch::empty({data.numel()}, options);
data_gpu.copy_(data, false);
// Create output tensor
auto output = torch::zeros({num_blocks, 256}, torch::dtype(torch::kFloat32).device(device));
// Launch kernel
dequantize_q2_k_kernel<<< 512, 256 >>>(data_gpu.data_ptr<int8_t>(), output.data_ptr<float>(), blk_size, num_blocks);
cudaDeviceSynchronize();
return output;
}

View File

@ -3,8 +3,8 @@
* @Author : Azure-Tang
* @Date : 2024-07-22 09:27:55
* @Version : 1.0.0
* @LastEditors : Azure
* @LastEditTime : 2024-07-26 08:38:20
* @LastEditors : kkk1nak0
* @LastEditTime : 2024-08-12 03:48:46
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
#pragma once
@ -15,4 +15,7 @@
torch::Tensor dequantize_q8_0(torch::Tensor data, int blk_size, torch::Device device);
torch::Tensor dequantize_q6_k(torch::Tensor data, int blk_size, torch::Device device);
torch::Tensor dequantize_q4_k(torch::Tensor data, int blk_size, torch::Device device);
torch::Tensor dequantize_q5_k(torch::Tensor data, int blk_size, torch::Device device);
torch::Tensor dequantize_q4_k(torch::Tensor data, int blk_size, torch::Device device);
torch::Tensor dequantize_q3_k(torch::Tensor data, int blk_size, torch::Device device);
torch::Tensor dequantize_q2_k(torch::Tensor data, int blk_size, torch::Device device);

View File

@ -23,7 +23,7 @@
*/
#include "gptq_marlin.cuh"
#include "gptq_marlin_dtypes.cuh"
#include <c10/cuda/CUDAGuard.h>
#define STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t) \
static_assert(std::is_same<scalar_t, half>::value || \
std::is_same<scalar_t, nv_bfloat16>::value, \
@ -1774,6 +1774,7 @@ torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
torch::Tensor& perm, torch::Tensor& workspace,
int64_t num_bits, int64_t size_m, int64_t size_n,
int64_t size_k, bool is_k_full) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
// Verify num_bits
TORCH_CHECK(num_bits == 4 || num_bits == 8,
"num_bits must be 4 or 8. Got = ", num_bits);
@ -1816,7 +1817,6 @@ torch::Tensor gptq_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
TORCH_CHECK(perm.is_contiguous(), "perm is not contiguous");
// Alloc buffers
const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
auto options = torch::TensorOptions().dtype(a.dtype()).device(a.device());
torch::Tensor c = torch::empty({size_m, size_n}, options);
torch::Tensor a_tmp = torch::empty({size_m, size_k}, options);

View File

@ -2,17 +2,25 @@
from setuptools import setup, Extension
from torch.utils import cpp_extension
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
# setup marlin gemm
setup(name='KTransformersOps',
ext_modules=[
CUDAExtension('KTransformersOps', [
setup(
name='KTransformersOps',
ext_modules=[
CUDAExtension(
'KTransformersOps', [
'custom_gguf/dequant.cu',
'binding.cpp',
'gptq_marlin/gptq_marlin.cu',
# 'gptq_marlin_repack.cu',
])
],
cmdclass={'build_ext': BuildExtension
})
# 'gptq_marlin_repack.cu',
],
extra_compile_args={
'cxx': ['-O3'],
'nvcc': [
'-O3',
'--use_fast_math',
'-Xcompiler', '-fPIC',
]
},
)
],
cmdclass={'build_ext': BuildExtension}
)

View File

@ -6,7 +6,7 @@ Author : chenht2022
Date : 2024-07-25 10:32:05
Version : 1.0.0
LastEditors : chenht2022
LastEditTime : 2024-07-25 10:34:00
LastEditTime : 2024-08-06 10:36:59
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
import os, sys
@ -15,23 +15,23 @@ sys.path.append(os.path.dirname(__file__) + '/../build')
import cpuinfer_ext
import torch
with torch.inference_mode(mode=True):
input_size = 16384
output_size = 5120
stride = 32
proj_type = 1 # ggml_type::GGML_TYPE_F16
hidden_type = 1 # ggml_type::GGML_TYPE_F16
layer_num = 10
CPUInfer = cpuinfer_ext.CPUInfer(48)
validation_iter = 100
warm_up_iter = 1000
test_iter = 10000
input_size = 16384
output_size = 5120
stride = 32
group_max_len = 1024
proj_type = 1 # ggml_type::GGML_TYPE_F16
hidden_type = 1 # ggml_type::GGML_TYPE_F16
qlen = 30
layer_num = 10
CPUInfer = cpuinfer_ext.CPUInfer(48)
validation_iter = 100
with torch.inference_mode(mode=True):
linears = []
projs = []
for _ in range(layer_num):
proj = torch.randn((output_size, input_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous()
config = cpuinfer_ext.linear.LinearConfig(input_size, output_size, stride, proj.data_ptr(), proj_type, hidden_type)
config = cpuinfer_ext.linear.LinearConfig(input_size, output_size, stride, group_max_len, proj.data_ptr(), proj_type, hidden_type)
linear = cpuinfer_ext.linear.Linear(config)
projs.append(proj)
linears.append(linear)
@ -39,11 +39,17 @@ with torch.inference_mode(mode=True):
# validation
for i in range(validation_iter):
linear = linears[i % layer_num]
input = torch.randn((1, input_size), dtype=torch.float16).contiguous()
output = torch.empty((1, output_size), dtype=torch.float16).contiguous()
input = torch.randn((qlen, input_size), dtype=torch.float16).contiguous()
output = torch.empty((qlen, output_size), dtype=torch.float16).contiguous()
input = input / 100
CPUInfer.submit(linear.forward, input.data_ptr(), output.data_ptr())
CPUInfer.submit(
linear.forward(
qlen,
input.data_ptr(),
output.data_ptr()
)
)
CPUInfer.sync()
# print('cpuinfer output', output)
@ -54,30 +60,3 @@ with torch.inference_mode(mode=True):
diff = torch.mean(torch.abs(output - t_output)) / torch.mean(torch.abs(t_output))
print('diff = ', diff)
assert(diff < 0.001)
# warm up
for i in range(warm_up_iter):
linear = linears[i % layer_num]
input = torch.randn((1, input_size), dtype=torch.float16).contiguous()
output = torch.empty((1, output_size), dtype=torch.float16).contiguous()
input = input / 100
CPUInfer.submit(linear.forward, input.data_ptr(), output.data_ptr())
CPUInfer.sync()
# test
total_time = 0
for i in range(test_iter):
linear = linears[i % layer_num]
input = torch.randn((1, input_size), dtype=torch.float16).contiguous()
output = torch.empty((1, output_size), dtype=torch.float16).contiguous()
input = input / 100
start = time.perf_counter()
CPUInfer.submit(linear.forward, input.data_ptr(), output.data_ptr())
CPUInfer.sync()
end = time.perf_counter()
total_time += end - start
print('Time: ', total_time)
print('Iteration: ', test_iter)
print('Time per iteration: ', total_time / test_iter)
print('Bandwidth: ', input_size * output_size * 2 * test_iter / total_time / 1000 / 1000 / 1000, 'GB/s')
print("All tasks completed.")

View File

@ -6,7 +6,7 @@ Author : chenht2022
Date : 2024-07-25 10:32:05
Version : 1.0.0
LastEditors : chenht2022
LastEditTime : 2024-07-25 10:34:03
LastEditTime : 2024-08-06 10:37:28
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
import os, sys
@ -15,20 +15,30 @@ sys.path.append(os.path.dirname(__file__) + '/../build')
import cpuinfer_ext
import torch
with torch.inference_mode(mode=True):
hidden_size = 5120
intermediate_size = 3072
stride = 32
gate_type = 1 # ggml_type::GGML_TYPE_F16
up_type = 1 # ggml_type::GGML_TYPE_F16
down_type = 1 # ggml_type::GGML_TYPE_F16
hidden_type = 1 # ggml_type::GGML_TYPE_F16
layer_num = 10
CPUInfer = cpuinfer_ext.CPUInfer(48)
validation_iter = 100
warm_up_iter = 1000
test_iter = 10000
hidden_size = 5120
intermediate_size = 3072
stride = 32
group_max_len = 1024
gate_type = 1 # ggml_type::GGML_TYPE_F16
up_type = 1 # ggml_type::GGML_TYPE_F16
down_type = 1 # ggml_type::GGML_TYPE_F16
hidden_type = 1 # ggml_type::GGML_TYPE_F16
qlen = 30
layer_num = 10
CPUInfer = cpuinfer_ext.CPUInfer(48)
validation_iter = 100
def act_fn(x):
return x / (1.0 + torch.exp(-x))
def mlp_torch(input, gate_proj, up_proj, down_proj):
gate_buf = torch.mm(input, gate_proj.t())
up_buf = torch.mm(input, up_proj.t())
intermediate = act_fn(gate_buf) * up_buf
ret = torch.mm(intermediate, down_proj.t())
return ret
with torch.inference_mode(mode=True):
mlps = []
gate_projs = []
up_projs = []
@ -37,7 +47,7 @@ with torch.inference_mode(mode=True):
gate_proj = torch.randn((intermediate_size, hidden_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous()
up_proj = torch.randn((intermediate_size, hidden_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous()
down_proj = torch.randn((hidden_size, intermediate_size), dtype=torch.float16, device = "cuda").to("cpu").contiguous()
config = cpuinfer_ext.mlp.MLPConfig(hidden_size, intermediate_size, stride, gate_proj.data_ptr(), up_proj.data_ptr(), down_proj.data_ptr(), gate_type, up_type, down_type, hidden_type)
config = cpuinfer_ext.mlp.MLPConfig(hidden_size, intermediate_size, stride, group_max_len, gate_proj.data_ptr(), up_proj.data_ptr(), down_proj.data_ptr(), gate_type, up_type, down_type, hidden_type)
mlp = cpuinfer_ext.mlp.MLP(config)
gate_projs.append(gate_proj)
up_projs.append(up_proj)
@ -47,52 +57,26 @@ with torch.inference_mode(mode=True):
# validation
for i in range(validation_iter):
mlp = mlps[i % layer_num]
input = torch.randn((1, hidden_size), dtype=torch.float16).contiguous()
output = torch.empty((1, hidden_size), dtype=torch.float16).contiguous()
input = torch.randn((qlen, hidden_size), dtype=torch.float16).contiguous()
output = torch.empty((qlen, hidden_size), dtype=torch.float16).contiguous()
input = input / 100
CPUInfer.submit(mlp.forward, input.data_ptr(), output.data_ptr())
CPUInfer.submit(
mlp.forward(
qlen,
input.data_ptr(),
output.data_ptr()
)
)
CPUInfer.sync()
# print('cpuinfer output', output)
def act_fn(x):
return x / (1.0 + torch.exp(-x))
gate_proj = gate_projs[i%layer_num]
up_proj = up_projs[i%layer_num]
down_proj = down_projs[i%layer_num]
gate_buf = torch.mm(input, gate_proj.t())
up_buf = torch.mm(input, up_proj.t())
intermediate = act_fn(gate_buf) * up_buf
t_output = torch.mm(intermediate, down_proj.t())
t_output = mlp_torch(input, gate_proj, up_proj, down_proj)
# print('torch output', t_output)
diff = torch.mean(torch.abs(output - t_output)) / torch.mean(torch.abs(t_output))
print('diff = ', diff)
assert(diff < 0.001)
# warm up
for i in range(warm_up_iter):
mlp = mlps[i % layer_num]
input = torch.randn((1, hidden_size), dtype=torch.float16).contiguous()
output = torch.empty((1, hidden_size), dtype=torch.float16).contiguous()
input = input / 100
CPUInfer.submit(mlp.forward, input.data_ptr(), output.data_ptr())
CPUInfer.sync()
# test
total_time = 0
for i in range(test_iter):
mlp = mlps[i % layer_num]
input = torch.randn((1, hidden_size), dtype=torch.float16).contiguous()
output = torch.empty((1, hidden_size), dtype=torch.float16).contiguous()
input = input / 100
start = time.time()
CPUInfer.submit(mlp.forward, input.data_ptr(), output.data_ptr())
CPUInfer.sync()
end = time.time()
total_time += end - start
print('Time: ', total_time)
print('Iteration: ', test_iter)
print('Time per iteration: ', total_time / test_iter)
print('Bandwidth: ', hidden_size * intermediate_size * 3 * 2 * test_iter / total_time / 1024 / 1024 / 1024, 'GB/s')
print("All tasks completed.")

View File

@ -6,7 +6,7 @@ Author : chenht2022
Date : 2024-07-25 10:32:05
Version : 1.0.0
LastEditors : chenht2022
LastEditTime : 2024-07-25 10:34:06
LastEditTime : 2024-08-06 10:38:05
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
import os, sys
@ -15,25 +15,64 @@ sys.path.append(os.path.dirname(__file__) + '/../build')
import cpuinfer_ext
import torch
with torch.inference_mode(mode=True):
expert_num = 10
hidden_size = 5120
intermediate_size = 1536
stride = 32
group_min_len = 10
group_max_len = 1024
gate_type = 1 # ggml_type::GGML_TYPE_F16
up_type = 1 # ggml_type::GGML_TYPE_F16
down_type = 1 # ggml_type::GGML_TYPE_F16
hidden_type = 1 # ggml_type::GGML_TYPE_F16
n_routed_experts = 6
qlen = 30
layer_num = 10
CPUInfer = cpuinfer_ext.CPUInfer(48)
validation_iter = 100
warm_up_iter = 1000
test_iter = 10000
expert_num = 160
hidden_size = 5120
intermediate_size = 1536
stride = 32
group_min_len = 10
group_max_len = 1024
gate_type = 1 # ggml_type::GGML_TYPE_F16
up_type = 1 # ggml_type::GGML_TYPE_F16
down_type = 1 # ggml_type::GGML_TYPE_F16
hidden_type = 1 # ggml_type::GGML_TYPE_F16
n_routed_experts = 6
qlen = 30
layer_num = 10
CPUInfer = cpuinfer_ext.CPUInfer(48)
validation_iter = 100
def act_fn(x):
return x / (1.0 + torch.exp(-x))
def mlp_torch(input, gate_proj, up_proj, down_proj):
gate_buf = torch.mm(input, gate_proj.t())
up_buf = torch.mm(input, up_proj.t())
intermediate = act_fn(gate_buf) * up_buf
ret = torch.mm(intermediate, down_proj.t())
return ret
def moe_torch(input, expert_ids, weights, gate_proj, up_proj, down_proj):
cnts = expert_ids.new_zeros((expert_ids.shape[0], expert_num))
cnts.scatter_(1, expert_ids, 1)
tokens_per_expert = cnts.sum(dim=0)
idxs = expert_ids.view(-1).argsort()
sorted_tokens = input[idxs // expert_ids.shape[1]]
outputs = []
start_idx = 0
for i, num_tokens in enumerate(tokens_per_expert):
end_idx = start_idx + num_tokens
if num_tokens == 0:
continue
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
expert_out = mlp_torch(tokens_for_this_expert, gate_proj[i], up_proj[i], down_proj[i])
outputs.append(expert_out)
start_idx = end_idx
outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
new_x = torch.empty_like(outs)
new_x[idxs] = outs
t_output = (
new_x.view(*expert_ids.shape, -1)
.type(weights.dtype)
.mul_(weights.unsqueeze(dim=-1))
.sum(dim=1)
.type(new_x.dtype)
)
return t_output
with torch.inference_mode(mode=True):
moes = []
gate_projs = []
up_projs = []
@ -51,63 +90,32 @@ with torch.inference_mode(mode=True):
# validation
for i in range(validation_iter):
moe = moes[i % layer_num]
expert_ids = torch.randint(0, expert_num, (qlen, n_routed_experts), dtype=torch.int64).contiguous()
expert_ids = torch.stack([torch.randperm(expert_num)[:n_routed_experts] for _ in range(qlen)]).contiguous()
weights = torch.rand((qlen, n_routed_experts), dtype=torch.float32).contiguous()
input = torch.randn((qlen, 1, hidden_size), dtype=torch.float16).contiguous()
output = torch.empty((qlen, 1, hidden_size), dtype=torch.float16).contiguous()
input = torch.randn((qlen, hidden_size), dtype=torch.float16).contiguous()
output = torch.empty((qlen, hidden_size), dtype=torch.float16).contiguous()
input = input / 100
CPUInfer.submit(moe.forward, qlen, n_routed_experts, expert_ids.data_ptr(), weights.data_ptr(), input.data_ptr(), output.data_ptr())
moe = moes[i % layer_num]
CPUInfer.submit(
moe.forward(
qlen,
n_routed_experts,
expert_ids.data_ptr(),
weights.data_ptr(),
input.data_ptr(),
output.data_ptr()
)
)
CPUInfer.sync()
# print('cpuinfer output', output)
def act_fn(x):
return x / (1.0 + torch.exp(-x))
t_output = torch.zeros((qlen, 1, hidden_size), dtype=torch.float32).contiguous()
gate_proj = gate_projs[i%layer_num]
up_proj = up_projs[i%layer_num]
down_proj = down_projs[i%layer_num]
for token_idx in range(qlen):
for i, expert_id in enumerate(expert_ids[token_idx]):
gate_buf = torch.mm(input[token_idx], gate_proj[expert_id].t())
up_buf = torch.mm(input[token_idx], up_proj[expert_id].t())
intermediate = act_fn(gate_buf) * up_buf
expert_output = torch.mm(intermediate, down_proj[expert_id].t())
t_output[token_idx] += weights[token_idx][i] * expert_output
t_output = moe_torch(input, expert_ids, weights, gate_proj, up_proj, down_proj)
# print('torch output', t_output)
diff = torch.mean(torch.abs(output - t_output)) / torch.mean(torch.abs(t_output))
print('diff = ', diff)
assert(diff < 0.001)
# warm up
for i in range(warm_up_iter):
moe = moes[i % layer_num]
expert_ids = torch.randint(0, expert_num, (qlen, n_routed_experts), dtype=torch.int64).contiguous()
weights = torch.rand((qlen, n_routed_experts), dtype=torch.float32).contiguous()
input = torch.randn((qlen, hidden_size), dtype=torch.float16).contiguous()
output = torch.empty((qlen, hidden_size), dtype=torch.float16).contiguous()
input = input / 100
CPUInfer.submit(moe.forward, qlen, n_routed_experts, expert_ids.data_ptr(), weights.data_ptr(), input.data_ptr(), output.data_ptr())
CPUInfer.sync()
# test
total_time = 0
for i in range(test_iter):
moe = moes[i % layer_num]
expert_ids = torch.randint(0, expert_num, (qlen, n_routed_experts), dtype=torch.int64).contiguous()
weights = torch.rand((qlen, n_routed_experts), dtype=torch.float32).contiguous()
input = torch.randn((qlen, hidden_size), dtype=torch.float16).contiguous()
output = torch.empty((qlen, hidden_size), dtype=torch.float16).contiguous()
input = input / 100
start = time.perf_counter()
CPUInfer.submit(moe.forward, qlen, n_routed_experts, expert_ids.data_ptr(), weights.data_ptr(), input.data_ptr(), output.data_ptr())
CPUInfer.sync()
end = time.perf_counter()
total_time += end - start
print('Time: ', total_time)
print('Iteration: ', test_iter)
print('Time per iteration: ', total_time / test_iter)
print('Bandwidth: ', hidden_size * intermediate_size * 3 * n_routed_experts * 2 * test_iter / total_time / 1000 / 1000 / 1000, 'GB/s')
print("All tasks completed.")

View File

@ -3,8 +3,8 @@
* @Author : chenht2022
* @Date : 2024-07-22 02:03:22
* @Version : 1.0.0
* @LastEditors : chenht2022
* @LastEditTime : 2024-07-25 10:34:23
* @LastEditors : chenht2022
* @LastEditTime : 2024-08-07 10:39:37
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
// Python bindings
@ -12,7 +12,6 @@
#include <iostream>
#include <memory>
#include "cpu_backend/cpuinfer.h"
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "llamafile/flags.h"
#include "operators/llamafile/linear.h"
@ -26,239 +25,155 @@
namespace py = pybind11;
using namespace pybind11::literals;
// Binding functions for the Linear class
class LinearBindings {
public:
static void bind_forward(CPUInfer& cpuinfer, Linear* linear, py::args args, py::kwargs kwargs) {
auto input = args[0].cast<intptr_t>();
auto output = args[1].cast<intptr_t>();
cpuinfer.submit(&Linear::forward, linear,
(const void*)input, (void*)output);
}
static void bind_warm_up(CPUInfer& cpuinfer, Linear* linear, py::args args, py::kwargs kwargs) {
cpuinfer.submit(&Linear::warm_up, linear);
}
static void bind_functions(CPUInfer& cpuinfer, py::object func, py::args args, py::kwargs kwargs) {
auto linear = func.attr("__self__").cast<Linear*>();
std::string func_name = py::str(func.attr("__func__").attr("__name__"));
if (func_name == "forward") {
bind_forward(cpuinfer, linear, args, kwargs);
} else if (func_name == "warm_up") {
bind_warm_up(cpuinfer, linear, args, kwargs);
} else {
throw py::value_error("Unsupported function: " +
std::string(func_name));
class WarmUpBindinds {
public:
struct Args {
CPUInfer* cpuinfer;
Linear* linear;
};
static void inner(void* args) {
Args* args_ = (Args*)args;
args_->cpuinfer->enqueue(&Linear::warm_up, args_->linear);
}
}
static std::pair<intptr_t, intptr_t> cpuinfer_interface(Linear& linear) {
Args* args = new Args{nullptr, &linear};
return std::make_pair((intptr_t)&inner, (intptr_t)args);
}
};
class ForwardBindings {
public:
struct Args {
CPUInfer* cpuinfer;
Linear* linear;
int qlen;
const void* input;
void* output;
};
static void inner(void* args) {
Args* args_ = (Args*)args;
args_->cpuinfer->enqueue(&Linear::forward, args_->linear, args_->qlen, args_->input, args_->output);
}
static std::pair<intptr_t, intptr_t> cpuinfer_interface(Linear& linear, int qlen, intptr_t input, intptr_t output) {
Args* args = new Args{nullptr, &linear, qlen, (const void*)input, (void*)output};
return std::make_pair((intptr_t)&inner, (intptr_t)args);
}
};
};
// Binding functions for the MLP class
class MLPBindings {
public:
static void bind_forward(CPUInfer& cpuinfer, MLP* mlp, py::args args, py::kwargs kwargs) {
auto input = args[0].cast<intptr_t>();
auto output = args[1].cast<intptr_t>();
cpuinfer.submit(&MLP::forward, mlp,
(const void*)input, (void*)output);
}
static void bind_warm_up(CPUInfer& cpuinfer, MLP* mlp, py::args args, py::kwargs kwargs) {
cpuinfer.submit(&MLP::warm_up, mlp);
}
static void bind_functions(CPUInfer& cpuinfer, py::object func, py::args args, py::kwargs kwargs) {
auto mlp = func.attr("__self__").cast<MLP*>();
std::string func_name = py::str(func.attr("__func__").attr("__name__"));
if (func_name == "forward") {
bind_forward(cpuinfer, mlp, args, kwargs);
} else if (func_name == "warm_up") {
bind_warm_up(cpuinfer, mlp, args, kwargs);
} else {
throw py::value_error("Unsupported function: " +
std::string(func_name));
class WarmUpBindinds {
public:
struct Args {
CPUInfer* cpuinfer;
MLP* mlp;
};
static void inner(void* args) {
Args* args_ = (Args*)args;
args_->cpuinfer->enqueue(&MLP::warm_up, args_->mlp);
}
}
static std::pair<intptr_t, intptr_t> cpuinfer_interface(MLP& mlp) {
Args* args = new Args{nullptr, &mlp};
return std::make_pair((intptr_t)&inner, (intptr_t)args);
}
};
class ForwardBindings {
public:
struct Args {
CPUInfer* cpuinfer;
MLP* mlp;
int qlen;
const void* input;
void* output;
};
static void inner(void* args) {
Args* args_ = (Args*)args;
args_->cpuinfer->enqueue(&MLP::forward, args_->mlp, args_->qlen, args_->input, args_->output);
}
static std::pair<intptr_t, intptr_t> cpuinfer_interface(MLP& mlp, int qlen, intptr_t input, intptr_t output) {
Args* args = new Args{nullptr, &mlp, qlen, (const void*)input, (void*)output};
return std::make_pair((intptr_t)&inner, (intptr_t)args);
}
};
};
// Binding functions for the MOE class
class MOEBindings {
public:
static void bind_forward(CPUInfer& cpuinfer, MOE* moe, py::args args, py::kwargs kwargs) {
int qlen = args[0].cast<int>();
int k = args[1].cast<int>();
auto expert_ids = args[2].cast<intptr_t>();
auto weights = args[3].cast<intptr_t>();
auto input = args[4].cast<intptr_t>();
auto output = args[5].cast<intptr_t>();
cpuinfer.submit(&MOE::forward, moe,
qlen, k, (const uint64_t*)expert_ids, (const float*)weights, (const void*)input, (void*)output);
}
static void bind_warm_up(CPUInfer& cpuinfer, MOE* moe, py::args args, py::kwargs kwargs) {
cpuinfer.submit(&MOE::warm_up, moe);
}
static void bind_functions(CPUInfer& cpuinfer, py::object func, py::args args, py::kwargs kwargs) {
auto moe = func.attr("__self__").cast<MOE*>();
std::string func_name = py::str(func.attr("__func__").attr("__name__"));
if (func_name == "forward") {
bind_forward(cpuinfer, moe, args, kwargs);
} else if (func_name == "warm_up") {
bind_warm_up(cpuinfer, moe, args, kwargs);
} else {
throw py::value_error("Unsupported function: " +
std::string(func_name));
class WarmUpBindinds {
public:
struct Args {
CPUInfer* cpuinfer;
MOE* moe;
};
static void inner(void* args) {
Args* args_ = (Args*)args;
args_->cpuinfer->enqueue(&MOE::warm_up, args_->moe);
}
}
static std::pair<intptr_t, intptr_t> cpuinfer_interface(MOE& moe) {
Args* args = new Args{nullptr, &moe};
return std::make_pair((intptr_t)&inner, (intptr_t)args);
}
};
class ForwardBindings {
public:
struct Args {
CPUInfer* cpuinfer;
MOE* moe;
int qlen;
int k;
const uint64_t* expert_ids;
const float* weights;
const void* input;
void* output;
};
static void inner(void* args) {
Args* args_ = (Args*)args;
args_->cpuinfer->enqueue(&MOE::forward, args_->moe, args_->qlen, args_->k, args_->expert_ids, args_->weights, args_->input, args_->output);
}
static std::pair<intptr_t, intptr_t> cpuinfer_interface(MOE& moe, int qlen, int k, intptr_t expert_ids, intptr_t weights, intptr_t input, intptr_t output) {
Args* args = new Args{nullptr, &moe, qlen, k, (const uint64_t*)expert_ids, (const float*)weights, (const void*)input, (void*)output};
return std::make_pair((intptr_t)&inner, (intptr_t)args);
}
};
};
struct MOEForwardArgs {
CPUInfer* cpuinfer;
MOE* moe;
int qlen;
int k;
uint64_t* expert_ids;
float* weights;
void* input;
void* output;
};
void submit_moe_forward_with_host_args_ptr(void* host_args_ptr) {
MOEForwardArgs* host_args = (MOEForwardArgs*)host_args_ptr;
host_args->cpuinfer->submit(&MOE::forward, host_args->moe,
host_args->qlen, host_args->k, host_args->expert_ids, host_args->weights, host_args->input, host_args->output);
}
void cpuinfer_sync(void* host_args_ptr) {
CPUInfer* cpuinfer = (CPUInfer*)host_args_ptr;
cpuinfer->sync();
}
PYBIND11_MODULE(cpuinfer_ext, m) {
py::class_<CPUInfer>(m, "CPUInfer")
.def(py::init<int>())
.def("submit", &CPUInfer::submit)
.def("submit_with_cuda_stream", &CPUInfer::submit_with_cuda_stream)
.def("sync", &CPUInfer::sync)
.def("sync_with_cuda_stream", &CPUInfer::sync_with_cuda_stream);
auto linear_module = m.def_submodule("linear");
py::class_<LinearConfig>(linear_module, "LinearConfig")
.def(py::init([](int hidden_size, int intermediate_size, int stride, intptr_t proj, int proj_type, int hidden_type) {
return LinearConfig(hidden_size, intermediate_size, stride, (void*)proj, (ggml_type)proj_type, (ggml_type)hidden_type);
.def(py::init([](int hidden_size, int intermediate_size, int stride, int group_max_len, intptr_t proj, int proj_type, int hidden_type) {
return LinearConfig(hidden_size, intermediate_size, stride, group_max_len, (void*)proj, (ggml_type)proj_type, (ggml_type)hidden_type);
}));
py::class_<Linear>(linear_module, "Linear")
.def(py::init<LinearConfig>())
.def("warm_up", [](Linear& linear) {
throw std::runtime_error("!!! Doing nothing, please use CPUInfer.submit to call it!!!\n");
})
.def("forward", [](Linear& linear, intptr_t input, intptr_t output) {
throw std::runtime_error("!!! Doing nothing, please use CPUInfer.submit to call it!!!\n");
});
.def("warm_up", &LinearBindings::WarmUpBindinds::cpuinfer_interface)
.def("forward", &LinearBindings::ForwardBindings::cpuinfer_interface);
auto mlp_module = m.def_submodule("mlp");
py::class_<MLPConfig>(mlp_module, "MLPConfig")
.def(py::init([](int hidden_size, int intermediate_size, int stride, intptr_t gate_proj, intptr_t up_proj, intptr_t down_proj, int gate_type, int up_type, int down_type, int hidden_type) {
return MLPConfig(hidden_size, intermediate_size, stride, (void*)gate_proj, (void*)up_proj, (void*)down_proj, (ggml_type)gate_type, (ggml_type)up_type, (ggml_type)down_type, (ggml_type)hidden_type);
.def(py::init([](int hidden_size, int intermediate_size, int stride, int group_max_len, intptr_t gate_proj, intptr_t up_proj, intptr_t down_proj, int gate_type, int up_type, int down_type, int hidden_type) {
return MLPConfig(hidden_size, intermediate_size, stride, group_max_len, (void*)gate_proj, (void*)up_proj, (void*)down_proj, (ggml_type)gate_type, (ggml_type)up_type, (ggml_type)down_type, (ggml_type)hidden_type);
}));
py::class_<MLP>(mlp_module, "MLP")
.def(py::init<MLPConfig>())
.def("warm_up", [](MLP& mlp) {
throw std::runtime_error("!!! Doing nothing, please use CPUInfer.submit to call it!!!\n");
})
.def("forward", [](MLP& mlp, intptr_t input, intptr_t output) {
throw std::runtime_error("!!! Doing nothing, please use CPUInfer.submit to call it!!!\n");
});
.def("warm_up", &MLPBindings::WarmUpBindinds::cpuinfer_interface)
.def("forward", &MLPBindings::ForwardBindings::cpuinfer_interface);
auto moe_module = m.def_submodule("moe");
py::class_<MOEConfig>(moe_module, "MOEConfig")
.def(py::init([](int expert_num, int routed_expert_num, int hidden_size, int intermediate_size, int stride, int group_min_len, int group_max_len, intptr_t gate_proj, intptr_t up_proj, intptr_t down_proj, int gate_type, int up_type, int down_type, int hidden_type) {
return MOEConfig(expert_num, routed_expert_num, hidden_size, intermediate_size, stride, group_min_len, group_max_len, (void*)gate_proj, (void*)up_proj, (void*)down_proj, (ggml_type)gate_type, (ggml_type)up_type, (ggml_type)down_type, (ggml_type)hidden_type);
}));
py::class_<MOE>(moe_module, "MOE")
.def(py::init<MOEConfig>())
.def("warm_up", [](MOE& moe) {
throw std::runtime_error("!!! Doing nothing, please use CPUInfer.submit to call it!!!\n");
})
.def("forward", [](MOE& moe, int k, uint64_t expert_ids, intptr_t weights, intptr_t input, intptr_t output) {
throw std::runtime_error("!!! Doing nothing, please use CPUInfer.submit to call it!!!\n");
});
py::class_<CPUInfer>(m, "CPUInfer")
.def(py::init<int>())
.def("submit",
[linear_module, mlp_module, moe_module](CPUInfer& cpuinfer, py::object func, py::args args, py::kwargs kwargs) {
if (py::hasattr(func, "__self__") &&
py::hasattr(func, "__func__")) {
std::string class_name = py::str(func.attr("__self__")
.attr("__class__")
.attr("__name__"));
if (class_name == "Linear") {
LinearBindings::bind_functions(cpuinfer, func,
args, kwargs);
} else if (class_name == "MLP") {
MLPBindings::bind_functions(cpuinfer, func,
args, kwargs);
} else if (class_name == "MOE") {
MOEBindings::bind_functions(cpuinfer, func,
args, kwargs);
} else {
// handle other classes
throw py::type_error("Unsupported class type: " +
class_name);
}
} else {
// handle cases where func does not have __self__ or
// __func__
throw py::type_error(
"Invalid function object: missing "
"__self__ or __func__ attribute.");
}
})
.def("submit_with_cuda_stream",
[linear_module, mlp_module, moe_module](CPUInfer& cpuinfer, intptr_t user_cuda_stream, py::object func, py::args args, py::kwargs kwargs) {
if (py::hasattr(func, "__self__") &&
py::hasattr(func, "__func__")) {
std::string class_name = py::str(func.attr("__self__")
.attr("__class__")
.attr("__name__"));
if (class_name == "MOE") {
std::string func_name = py::str(func.attr("__func__").attr("__name__"));
if (func_name == "forward") {
auto moe = func.attr("__self__").cast<MOE*>();
int qlen = args[0].cast<int>();
int k = args[1].cast<int>();
auto expert_ids = args[2].cast<intptr_t>();
auto weights = args[3].cast<intptr_t>();
auto input = args[4].cast<intptr_t>();
auto output = args[5].cast<intptr_t>();
MOEForwardArgs* moe_forward_args = new MOEForwardArgs{&cpuinfer, moe, qlen, k, (uint64_t*)expert_ids, (float*)weights, (void*)input, (void*)output};
// submit_moe_forward_with_host_args_ptr(moe_forward_args);
cudaLaunchHostFunc((cudaStream_t)user_cuda_stream, (cudaHostFn_t)submit_moe_forward_with_host_args_ptr, moe_forward_args);
} else {
throw py::value_error("Unsupported function: " +
std::string(func_name));
}
} else {
// handle other classes
throw py::type_error("Unsupported class type: " +
class_name);
}
} else {
// handle cases where func does not have __self__ or
// __func__
throw py::type_error(
"Invalid function object: missing "
"__self__ or __func__ attribute.");
}
})
.def("sync_with_cuda_stream", [](CPUInfer& cpuinfer, intptr_t user_cuda_stream) {
// cpuinfer_sync((void*)(&cpuinfer));
cudaLaunchHostFunc((cudaStream_t)user_cuda_stream, (cudaHostFn_t)cpuinfer_sync, (void*)(&cpuinfer));
})
.def("sync", &CPUInfer::sync);
.def("warm_up", &MOEBindings::WarmUpBindinds::cpuinfer_interface)
.def("forward", &MOEBindings::ForwardBindings::cpuinfer_interface);
}

View File

@ -1,206 +0,0 @@
import math
import os
import time
from logging import getLogger
import torch
import torch.nn as nn
import transformers
from .quantizer import Quantizer
logger = getLogger(__name__)
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
class GPTQ:
def __init__(self, layer):
self.layer = layer
self.dev = self.layer.weight.device
W = layer.weight.data.clone()
if isinstance(self.layer, nn.Conv2d):
W = W.flatten(1)
if isinstance(self.layer, transformers.pytorch_utils.Conv1D):
W = W.t()
self.rows = W.shape[0]
self.columns = W.shape[1]
self.H = torch.zeros((self.columns, self.columns), device=self.dev)
self.nsamples = 0
self.quantizer = Quantizer()
def add_batch(self, inp, out):
if os.environ.get("DEBUG"):
self.inp1 = inp
self.out1 = out
if len(inp.shape) == 2:
inp = inp.unsqueeze(0)
tmp = inp.shape[0]
if isinstance(self.layer, nn.Linear) or isinstance(self.layer, transformers.Conv1D):
if len(inp.shape) == 3:
inp = inp.reshape((-1, inp.shape[-1]))
inp = inp.t()
if isinstance(self.layer, nn.Conv2d):
unfold = nn.Unfold(
self.layer.kernel_size,
dilation=self.layer.dilation,
padding=self.layer.padding,
stride=self.layer.stride,
)
inp = unfold(inp)
inp = inp.permute([1, 0, 2])
inp = inp.flatten(1)
self.H *= self.nsamples / (self.nsamples + tmp)
self.nsamples += tmp
# inp = inp.float()
inp = math.sqrt(2 / self.nsamples) * inp.float()
# self.H += 2 / self.nsamples * inp.matmul(inp.t())
self.H += inp.matmul(inp.t())
def fasterquant(
self,
blocksize=128,
percdamp=0.01,
group_size=-1,
actorder=False,
static_groups=False,
):
W = self.layer.weight.data.clone()
if isinstance(self.layer, nn.Conv2d):
W = W.flatten(1)
if isinstance(self.layer, transformers.Conv1D):
W = W.t()
W = W.float()
tick = time.time()
if not self.quantizer.ready():
self.quantizer.find_params(W, weight=True)
H = self.H
del self.H
dead = torch.diag(H) == 0
H[dead, dead] = 1
W[:, dead] = 0
g_idx = []
scale = []
zero = []
now_idx = 1
if static_groups:
import copy
groups = []
for i in range(0, self.columns, group_size):
quantizer = copy.deepcopy(self.quantizer)
quantizer.find_params(W[:, i : (i + group_size)], weight=True)
scale.append(quantizer.scale)
zero.append(quantizer.zero)
groups.append(quantizer)
if actorder:
perm = torch.argsort(torch.diag(H), descending=True)
W = W[:, perm]
H = H[perm][:, perm]
invperm = torch.argsort(perm)
Losses = torch.zeros_like(W)
Q = torch.zeros_like(W)
damp = percdamp * torch.mean(torch.diag(H))
diag = torch.arange(self.columns, device=self.dev)
H[diag, diag] += damp
H = torch.linalg.cholesky(H)
H = torch.cholesky_inverse(H)
H = torch.linalg.cholesky(H, upper=True)
Hinv = H
for i1 in range(0, self.columns, blocksize):
i2 = min(i1 + blocksize, self.columns)
count = i2 - i1
W1 = W[:, i1:i2].clone()
Q1 = torch.zeros_like(W1)
Err1 = torch.zeros_like(W1)
Losses1 = torch.zeros_like(W1)
Hinv1 = Hinv[i1:i2, i1:i2]
for i in range(count):
w = W1[:, i]
d = Hinv1[i, i]
if group_size != -1:
if not static_groups:
if (i1 + i) % group_size == 0:
self.quantizer.find_params(W[:, (i1 + i) : (i1 + i + group_size)], weight=True)
if ((i1 + i) // group_size) - now_idx == -1:
scale.append(self.quantizer.scale)
zero.append(self.quantizer.zero)
now_idx += 1
else:
idx = i1 + i
if actorder:
idx = perm[idx]
self.quantizer = groups[idx // group_size]
q = self.quantizer.quantize(w.unsqueeze(1)).flatten()
Q1[:, i] = q
Losses1[:, i] = (w - q) ** 2 / d**2
err1 = (w - q) / d
W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0))
Err1[:, i] = err1
Q[:, i1:i2] = Q1
Losses[:, i1:i2] = Losses1 / 2
W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])
if os.environ.get("DEBUG"):
self.layer.weight.data[:, :i2] = Q[:, :i2]
self.layer.weight.data[:, i2:] = W[:, i2:]
logger.debug(torch.sum((self.layer(self.inp1) - self.out1) ** 2))
logger.debug(torch.sum(Losses))
torch.cuda.synchronize()
logger.info(f"duration: {(time.time() - tick)}")
logger.info(f"avg loss: {torch.sum(Losses).item() / self.nsamples}")
group_size = group_size if group_size != -1 else self.columns
if static_groups and actorder:
g_idx = [perm[i] // group_size for i in range(self.columns)]
else:
g_idx = [i // group_size for i in range(self.columns)]
g_idx = torch.tensor(g_idx, dtype=torch.int32, device=Q.device)
if actorder:
Q = Q[:, invperm]
g_idx = g_idx[invperm]
if isinstance(self.layer, transformers.Conv1D):
Q = Q.t()
self.layer.weight.data = Q.reshape(self.layer.weight.shape).type_as(self.layer.weight.data)
if os.environ.get("DEBUG"):
logger.debug(torch.sum((self.layer(self.inp1) - self.out1) ** 2))
if scale == []:
scale.append(self.quantizer.scale)
zero.append(self.quantizer.zero)
scale = torch.cat(scale, dim=1)
zero = torch.cat(zero, dim=1)
return scale, zero, g_idx
def free(self):
if os.environ.get("DEBUG"):
self.inp1 = None
self.out1 = None
self.H = None
self.Losses = None
self.Trace = None
torch.cuda.empty_cache()
__all__ = ["GPTQ"]

View File

@ -1,458 +0,0 @@
import enum
from enum import Enum
from typing import Any, Dict, List, Optional
import torch
from torch.nn.parameter import Parameter
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
set_weight_attrs)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
logger = init_logger(__name__)
GPTQ_MARLIN_TILE = 16
GPTQ_MARLIN_MIN_THREAD_N = 64
GPTQ_MARLIN_MIN_THREAD_K = 128
GPTQ_MARLIN_MAX_PARALLEL = 16
GPTQ_MARLIN_SUPPORTED_NUM_BITS = [4, 8]
GPTQ_MARLIN_SUPPORTED_GROUP_SIZES = [-1, 32, 64, 128]
GPTQ_MARLIN_SUPPORTED_SYM = [True]
# Permutations for Marlin scale shuffling
def get_scale_perms(num_bits: int):
scale_perm: List[int] = []
for i in range(8):
scale_perm.extend([i + 8 * j for j in range(8)])
scale_perm_single: List[int] = []
for i in range(4):
scale_perm_single.extend(
[2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]])
return scale_perm, scale_perm_single
def get_pack_factor(num_bits: int):
assert (num_bits in GPTQ_MARLIN_SUPPORTED_NUM_BITS
), f"Unsupported num_bits = {num_bits}"
return 32 // num_bits
def marlin_permute_scales(s: torch.Tensor, size_k: int, size_n: int,
group_size: int, num_bits: int):
scale_perm, scale_perm_single = get_scale_perms(num_bits)
if group_size < size_k and group_size != -1:
s = s.reshape((-1, len(scale_perm)))[:, scale_perm]
else:
s = s.reshape((-1, len(scale_perm_single)))[:, scale_perm_single]
s = s.reshape((-1, size_n)).contiguous()
return s
class GPTQMarlinConfig(QuantizationConfig):
"""Config class for GPTQ Marlin"""
def __init__(self, weight_bits: int, group_size: int, desc_act: bool,
is_sym: bool) -> None:
if desc_act and group_size == -1:
# In this case, act_order == True is the same as act_order == False
# (since we have only one group per output channel)
desc_act = False
self.weight_bits = weight_bits
self.group_size = group_size
self.desc_act = desc_act
self.is_sym = is_sym
# Verify
if self.weight_bits not in GPTQ_MARLIN_SUPPORTED_NUM_BITS:
raise ValueError(
f"Marlin does not support weight_bits = {self.weight_bits}. "
f"Only weight_bits = {GPTQ_MARLIN_SUPPORTED_NUM_BITS} "
"are supported.")
if self.group_size not in GPTQ_MARLIN_SUPPORTED_GROUP_SIZES:
raise ValueError(
f"Marlin does not support group_size = {self.group_size}. "
f"Only group_sizes = {GPTQ_MARLIN_SUPPORTED_GROUP_SIZES} "
"are supported.")
if self.is_sym not in GPTQ_MARLIN_SUPPORTED_SYM:
raise ValueError(
f"Marlin does not support is_sym = {self.is_sym}. "
f"Only sym = {GPTQ_MARLIN_SUPPORTED_SYM} are supported.")
# Init
self.pack_factor = get_pack_factor(weight_bits)
self.tile_size = GPTQ_MARLIN_TILE
self.min_thread_n = GPTQ_MARLIN_MIN_THREAD_N
self.min_thread_k = GPTQ_MARLIN_MIN_THREAD_K
self.max_parallel = GPTQ_MARLIN_MAX_PARALLEL
def __repr__(self) -> str:
return (f"GPTQMarlinConfig(weight_bits={self.weight_bits}, "
f"group_size={self.group_size}, "
f"desc_act={self.desc_act})")
@classmethod
def get_name(cls) -> str:
return "gptq_marlin"
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.half, torch.bfloat16]
@classmethod
def get_min_capability(cls) -> int:
return 80
@classmethod
def get_config_filenames(cls) -> List[str]:
return ["quantize_config.json"]
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "GPTQMarlinConfig":
weight_bits = cls.get_from_keys(config, ["bits"])
group_size = cls.get_from_keys(config, ["group_size"])
desc_act = cls.get_from_keys(config, ["desc_act"])
is_sym = cls.get_from_keys(config, ["sym"])
return cls(weight_bits, group_size, desc_act, is_sym)
@classmethod
def override_quantization_method(cls, hf_quant_cfg,
user_quant) -> Optional[str]:
can_convert = cls.is_marlin_compatible(hf_quant_cfg)
is_valid_user_quant = (user_quant is None or user_quant == "marlin")
if can_convert and is_valid_user_quant:
msg = ("The model is convertible to {} during runtime."
" Using {} kernel.".format(cls.get_name(), cls.get_name()))
logger.info(msg)
return cls.get_name()
if can_convert and user_quant == "gptq":
logger.info("Detected that the model can run with gptq_marlin"
", however you specified quantization=gptq explicitly,"
" so forcing gptq. Use quantization=gptq_marlin for"
" faster inference")
return None
def get_quant_method(
self,
layer: torch.nn.Module) -> Optional["GPTQMarlinLinearMethod"]:
if isinstance(layer, LinearBase):
return GPTQMarlinLinearMethod(self)
return None
def get_scaled_act_names(self) -> List[str]:
return []
@classmethod
def is_marlin_compatible(cls, quant_config: Dict[str, Any]):
# Extract data from quant config.
num_bits = quant_config.get("bits", None)
group_size = quant_config.get("group_size", None)
sym = quant_config.get("sym", None)
desc_act = quant_config.get("desc_act", None)
# If we cannot find the info needed in the config, cannot convert.
if (num_bits is None or group_size is None or sym is None
or desc_act is None):
return False
# If the capability of the device is too low, cannot convert.
major, minor = torch.cuda.get_device_capability()
device_capability = major * 10 + minor
if device_capability < cls.get_min_capability():
return False
# Otherwise, can convert if model satisfies marlin constraints.
return (num_bits in GPTQ_MARLIN_SUPPORTED_NUM_BITS
and group_size in GPTQ_MARLIN_SUPPORTED_GROUP_SIZES
and sym in GPTQ_MARLIN_SUPPORTED_SYM)
class GPTQMarlinState(Enum):
REPACK = enum.auto()
READY = enum.auto()
class GPTQMarlinLinearMethod(LinearMethodBase):
"""Linear method for GPTQ Marlin.
Args:
quant_config: The GPTQ Marlin quantization config.
"""
def __init__(self, quant_config: GPTQMarlinConfig) -> None:
self.quant_config = quant_config
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: List[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
) -> None:
del output_size
# Normalize group_size
if self.quant_config.group_size != -1:
group_size = self.quant_config.group_size
else:
group_size = input_size
# Validate dtype
if params_dtype not in [torch.float16, torch.bfloat16]:
raise ValueError(f"The params dtype must be float16 "
f"or bfloat16, but got {params_dtype}")
# Validate output_size_per_partition
output_size_per_partition = sum(output_partition_sizes)
if output_size_per_partition % self.quant_config.min_thread_n != 0:
raise ValueError(
f"Weight output_size_per_partition = "
f"{output_size_per_partition} is not divisible by "
f" min_thread_n = {self.quant_config.min_thread_n}.")
# Validate input_size_per_partition
if input_size_per_partition % self.quant_config.min_thread_k != 0:
raise ValueError(
f"Weight input_size_per_partition = "
f"{input_size_per_partition} is not divisible "
f"by min_thread_k = {self.quant_config.min_thread_k}.")
if (group_size < input_size
and input_size_per_partition % group_size != 0):
raise ValueError(
f"Weight input_size_per_partition = {input_size_per_partition}"
f" is not divisible by group_size = {group_size}.")
# Detect sharding of scales/zp
# By default, no sharding over "input dim"
scales_and_zp_size = input_size // group_size
scales_and_zp_input_dim = None
if self.quant_config.desc_act:
# Act-order case
assert self.quant_config.group_size != -1
is_k_full = input_size_per_partition == input_size
else:
# No act-order case
# K is always full due to full alignment with
# group-size and shard of scales/zp
is_k_full = True
# If this is a row-parallel case, then shard scales/zp
if (input_size != input_size_per_partition
and self.quant_config.group_size != -1):
scales_and_zp_size = input_size_per_partition // group_size
scales_and_zp_input_dim = 0
# Init buffers
# Quantized weights
qweight = Parameter(
torch.empty(
input_size_per_partition // self.quant_config.pack_factor,
output_size_per_partition,
dtype=torch.int32,
),
requires_grad=False,
)
set_weight_attrs(
qweight,
{
**extra_weight_attrs,
"input_dim": 0,
"output_dim": 1,
"packed_dim": 0,
"pack_factor": self.quant_config.pack_factor,
},
)
# Activation order
g_idx = Parameter(
torch.empty(
input_size_per_partition,
dtype=torch.int32,
),
requires_grad=False,
)
# Ignore warning from fused linear layers such as QKVParallelLinear.
set_weight_attrs(
g_idx,
{
**extra_weight_attrs, "input_dim": 0,
"ignore_warning": True
},
)
g_idx_sort_indices = torch.empty(
g_idx.shape,
dtype=torch.int32,
)
# Scales
scales = Parameter(
torch.empty(
scales_and_zp_size,
output_size_per_partition,
dtype=params_dtype,
),
requires_grad=False,
)
set_weight_attrs(
scales,
{
**extra_weight_attrs,
"input_dim": scales_and_zp_input_dim,
"output_dim": 1,
},
)
# Quantized zero-points
qzeros = Parameter(
torch.empty(
scales_and_zp_size,
output_size_per_partition // self.quant_config.pack_factor,
dtype=torch.int32,
device="meta",
),
requires_grad=False,
)
set_weight_attrs(
qzeros,
{
**extra_weight_attrs,
"input_dim": scales_and_zp_input_dim,
"output_dim": 1,
"packed_dim": 1,
"pack_factor": self.quant_config.pack_factor,
},
)
# Allocate marlin workspace
max_workspace_size = (
output_size_per_partition //
self.quant_config.min_thread_n) * self.quant_config.max_parallel
workspace = torch.zeros(max_workspace_size,
dtype=torch.int,
requires_grad=False)
layer.register_parameter("qweight", qweight)
layer.register_parameter("g_idx", g_idx)
layer.register_parameter("scales", scales)
layer.register_parameter("qzeros", qzeros)
layer.g_idx_sort_indices = g_idx_sort_indices
layer.workspace = workspace
layer.input_size_per_partition = input_size_per_partition
layer.output_size_per_partition = output_size_per_partition
layer.input_size = input_size
layer.is_k_full = is_k_full
layer.marlin_state = GPTQMarlinState.REPACK
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
reshaped_x = x.reshape(-1, x.shape[-1])
size_m = reshaped_x.shape[0]
part_size_n = layer.output_size_per_partition
part_size_k = layer.input_size_per_partition
full_size_k = layer.input_size
out_shape = x.shape[:-1] + (part_size_n, )
if layer.marlin_state == GPTQMarlinState.REPACK:
layer.marlin_state = GPTQMarlinState.READY
# Newly generated tensors need to replace existing tensors that are
# already registered as parameters by vLLM (and won't be freed)
def replace_tensor(name, new_t):
# It is important to use resize_() here since it ensures
# the same buffer is reused
getattr(layer, name).resize_(new_t.shape)
getattr(layer, name).copy_(new_t)
del new_t
cur_device = layer.qweight.device
# Process act_order
if self.quant_config.desc_act:
# Get sorting based on g_idx
g_idx_sort_indices = torch.argsort(layer.g_idx).to(torch.int)
sorted_g_idx = layer.g_idx[g_idx_sort_indices]
replace_tensor("g_idx", sorted_g_idx)
replace_tensor("g_idx_sort_indices", g_idx_sort_indices)
else:
# Reset g_idx related tensors
layer.g_idx = Parameter(
torch.empty(0, dtype=torch.int, device=cur_device),
requires_grad=False,
)
layer.g_idx_sort_indices = Parameter(
torch.empty(0, dtype=torch.int, device=cur_device),
requires_grad=False,
)
# Repack weights
marlin_qweight = ops.gptq_marlin_repack(
layer.qweight,
layer.g_idx_sort_indices,
part_size_k,
part_size_n,
self.quant_config.weight_bits,
)
replace_tensor("qweight", marlin_qweight)
# Permute scales
scales_size_k = part_size_k
scales_size_n = part_size_n
if self.quant_config.desc_act:
scales_size_k = full_size_k
marlin_scales = marlin_permute_scales(
layer.scales,
scales_size_k,
scales_size_n,
self.quant_config.group_size,
self.quant_config.weight_bits,
)
replace_tensor("scales", marlin_scales)
output = ops.gptq_marlin_gemm(
reshaped_x,
layer.qweight,
layer.scales,
layer.g_idx,
layer.g_idx_sort_indices,
layer.workspace,
self.quant_config.weight_bits,
size_m,
part_size_n,
part_size_k,
layer.is_k_full,
)
if bias is not None:
output.add_(bias) # In-place add
return output.reshape(out_shape)

View File

@ -1,140 +0,0 @@
from logging import getLogger
import torch
import torch.nn as nn
logger = getLogger(__name__)
def quantize(x, scale, zero, maxq):
if maxq < 0:
return (x > scale / 2).float() * scale + (x < zero / 2).float() * zero
q = torch.clamp(torch.round(x / scale) + zero, 0, maxq)
return scale * (q - zero)
class Quantizer(nn.Module):
def __init__(self, shape=1):
super(Quantizer, self).__init__()
self.register_buffer("maxq", torch.tensor(0))
self.register_buffer("scale", torch.zeros(shape))
self.register_buffer("zero", torch.zeros(shape))
def configure(
self,
bits,
perchannel=False,
sym=True,
mse=False,
norm=2.4,
grid=100,
maxshrink=0.8,
trits=False,
):
self.maxq = torch.tensor(2**bits - 1)
self.perchannel = perchannel
self.sym = sym
self.mse = mse
self.norm = norm
self.grid = grid
self.maxshrink = maxshrink
if trits:
self.maxq = torch.tensor(-1)
def find_params(self, x, weight=False):
dev = x.device
self.maxq = self.maxq.to(dev)
shape = x.shape
if self.perchannel:
if weight:
x = x.flatten(1)
else:
if len(shape) == 4:
x = x.permute([1, 0, 2, 3])
x = x.flatten(1)
if len(shape) == 3:
x = x.reshape((-1, shape[-1])).t()
if len(shape) == 2:
x = x.t()
else:
x = x.flatten().unsqueeze(0)
tmp = torch.zeros(x.shape[0], device=dev)
xmin = torch.minimum(x.min(1)[0], tmp)
xmax = torch.maximum(x.max(1)[0], tmp)
if self.sym:
xmax = torch.maximum(torch.abs(xmin), xmax)
tmp = xmin < 0
if torch.any(tmp):
xmin[tmp] = -xmax[tmp]
tmp = (xmin == 0) & (xmax == 0)
xmin[tmp] = -1
xmax[tmp] = +1
if self.maxq < 0:
self.scale = xmax
self.zero = xmin
else:
self.scale = (xmax - xmin) / self.maxq
if self.sym:
self.zero = torch.full_like(self.scale, (self.maxq + 1) / 2)
else:
self.zero = torch.round(-xmin / self.scale)
if self.mse:
best = torch.full([x.shape[0]], float("inf"), device=dev)
for i in range(int(self.maxshrink * self.grid)):
p = 1 - i / self.grid
xmin1 = p * xmin
xmax1 = p * xmax
scale1 = (xmax1 - xmin1) / self.maxq
zero1 = torch.round(-xmin1 / scale1) if not self.sym else self.zero
q = quantize(x, scale1.unsqueeze(1), zero1.unsqueeze(1), self.maxq)
q -= x
q.abs_()
q.pow_(self.norm)
err = torch.sum(q, 1)
tmp = err < best
if torch.any(tmp):
best[tmp] = err[tmp]
self.scale[tmp] = scale1[tmp]
self.zero[tmp] = zero1[tmp]
if not self.perchannel:
if weight:
tmp = shape[0]
else:
tmp = shape[1] if len(shape) != 3 else shape[2]
self.scale = self.scale.repeat(tmp)
self.zero = self.zero.repeat(tmp)
if weight:
shape = [-1] + [1] * (len(shape) - 1)
self.scale = self.scale.reshape(shape)
self.zero = self.zero.reshape(shape)
return
if len(shape) == 4:
self.scale = self.scale.reshape((1, -1, 1, 1))
self.zero = self.zero.reshape((1, -1, 1, 1))
if len(shape) == 3:
self.scale = self.scale.reshape((1, 1, -1))
self.zero = self.zero.reshape((1, 1, -1))
if len(shape) == 2:
self.scale = self.scale.unsqueeze(0)
self.zero = self.zero.unsqueeze(0)
def quantize(self, x):
if self.ready():
return quantize(x, self.scale, self.zero, self.maxq)
return x
def enabled(self):
return self.maxq > 0
def ready(self):
return torch.all(self.scale != 0)
__all__ = ["Quantizer"]

View File

@ -1,99 +0,0 @@
import torch
import enum
from enum import Enum
from typing import Any, Dict, List, Optional
from torch.nn.parameter import Parameter
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
reshaped_x = x.reshape(-1, x.shape[-1])
size_m = reshaped_x.shape[0]
part_size_n = layer.output_size_per_partition
part_size_k = layer.input_size_per_partition
full_size_k = layer.input_size
out_shape = x.shape[:-1] + (part_size_n, )
if layer.marlin_state == GPTQMarlinState.REPACK:
layer.marlin_state = GPTQMarlinState.READY
# Newly generated tensors need to replace existing tensors that are
# already registered as parameters by vLLM (and won't be freed)
def replace_tensor(name, new_t):
# It is important to use resize_() here since it ensures
# the same buffer is reused
getattr(layer, name).resize_(new_t.shape)
getattr(layer, name).copy_(new_t)
del new_t
cur_device = layer.qweight.device
# Process act_order
if self.quant_config.desc_act:
# Get sorting based on g_idx
g_idx_sort_indices = torch.argsort(layer.g_idx).to(torch.int)
sorted_g_idx = layer.g_idx[g_idx_sort_indices]
replace_tensor("g_idx", sorted_g_idx)
replace_tensor("g_idx_sort_indices", g_idx_sort_indices)
else:
# Reset g_idx related tensors
layer.g_idx = Parameter(
torch.empty(0, dtype=torch.int, device=cur_device),
requires_grad=False,
)
layer.g_idx_sort_indices = Parameter(
torch.empty(0, dtype=torch.int, device=cur_device),
requires_grad=False,
)
# Repack weights
marlin_qweight = ops.gptq_marlin_repack(
layer.qweight,
layer.g_idx_sort_indices,
part_size_k,
part_size_n,
self.quant_config.weight_bits,
)
replace_tensor("qweight", marlin_qweight)
# Permute scales
scales_size_k = part_size_k
scales_size_n = part_size_n
if self.quant_config.desc_act:
scales_size_k = full_size_k
marlin_scales = marlin_permute_scales(
layer.scales,
scales_size_k,
scales_size_n,
self.quant_config.group_size,
self.quant_config.weight_bits,
)
replace_tensor("scales", marlin_scales)
output = ops.gptq_marlin_gemm(
reshaped_x,
layer.qweight,
layer.scales,
layer.g_idx,
layer.g_idx_sort_indices,
layer.workspace,
self.quant_config.weight_bits,
size_m,
part_size_n,
part_size_k,
layer.is_k_full,
)
if bias is not None:
output.add_(bias) # In-place add
return output.reshape(out_shape)

View File

@ -220,7 +220,7 @@ def compute_max_diff(output, output_ref):
class MarlinWorkspace:
def __init__(self, out_features, min_thread_n, max_parallel):
def __init__(self, out_features, min_thread_n, max_parallel, device):
assert (out_features % min_thread_n == 0), (
"out_features = {} is undivisible by min_thread_n = {}".format(
out_features, min_thread_n))
@ -229,4 +229,4 @@ class MarlinWorkspace:
self.scratch = torch.zeros(max_workspace_size,
dtype=torch.int,
device="cuda")
device=device)

View File

@ -3,7 +3,7 @@
* @Author : chenht2022
* @Date : 2024-07-12 10:07:58
* @Version : 1.0.0
* @LastEditors : chenht2022
* @LastEditors : chenht2022
* @LastEditTime : 2024-07-25 10:34:58
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
@ -13,9 +13,15 @@ Linear::Linear(LinearConfig config) {
config_ = config;
proj_ = config_.proj;
input_fp32_.resize(config_.input_size);
proj_input_.resize(config_.input_size * 4);
proj_output_.resize(config_.output_size);
std::vector<std::pair<void**, uint64_t>> mem_requests;
mem_requests.push_back({(void**)&input_fp32_, sizeof(float) * config_.group_max_len * config_.input_size});
mem_requests.push_back({(void**)&proj_input_, config_.group_max_len * config_.input_size * ggml_type_size(ggml_internal_get_type_traits(config_.proj_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.proj_type).vec_dot_type)});
mem_requests.push_back({(void**)&proj_output_, sizeof(float) * config_.group_max_len * config_.output_size});
shared_mem_buffer.alloc(this, mem_requests);
}
Linear::~Linear() {
shared_mem_buffer.dealloc(this);
}
void Linear::warm_up(Backend* backend) {
@ -26,22 +32,42 @@ void Linear::warm_up(Backend* backend) {
input_fp32[i] = 0;
}
from_float(input_fp32.data(), input.data(), config_.input_size, config_.hidden_type);
forward(input.data(), output.data(), backend);
forward_many(1, input.data(), output.data(), backend);
}
void Linear::forward(const void* input, void* output, Backend* backend) {
void Linear::forward_many(int qlen, const void* input, void* output, Backend* backend) {
const void* proj_input_ptr;
if (config_.hidden_type == ggml_internal_get_type_traits(config_.proj_type).vec_dot_type) {
proj_input_ptr = input;
} else {
to_float(input, input_fp32_.data(), config_.input_size, config_.hidden_type);
from_float(input_fp32_.data(), proj_input_.data(), config_.input_size, ggml_internal_get_type_traits(config_.proj_type).vec_dot_type);
proj_input_ptr = proj_input_.data();
to_float(input, input_fp32_, qlen * config_.input_size, config_.hidden_type);
from_float(input_fp32_, proj_input_, qlen * config_.input_size, ggml_internal_get_type_traits(config_.proj_type).vec_dot_type);
proj_input_ptr = proj_input_;
}
int nth = config_.output_size / config_.stride;
backend->do_work_stealing_job(nth, [&](int task_id) {
int ith = task_id % nth;
llamafile_sgemm(config_.output_size, 1, config_.input_size / ggml_blck_size(config_.proj_type), proj_, config_.input_size / ggml_blck_size(config_.proj_type), proj_input_ptr, config_.input_size / ggml_blck_size(config_.proj_type), proj_output_.data(), config_.output_size, ith, nth, GGML_TASK_TYPE_COMPUTE, config_.proj_type, ggml_internal_get_type_traits(config_.proj_type).vec_dot_type, GGML_TYPE_F32, GGML_PREC_DEFAULT);
int ith = task_id;
void* proj_ptr = (uint8_t*)proj_ + ith * config_.stride * config_.input_size * ggml_type_size(config_.proj_type) / ggml_blck_size(config_.proj_type);
float* proj_output_ptr = proj_output_ + ith * config_.stride;
llamafile_sgemm(config_.stride, qlen, config_.input_size / ggml_blck_size(config_.proj_type), proj_ptr, config_.input_size / ggml_blck_size(config_.proj_type), proj_input_ptr, config_.input_size / ggml_blck_size(config_.proj_type), proj_output_ptr, config_.output_size, 0, 1, GGML_TASK_TYPE_COMPUTE, config_.proj_type, ggml_internal_get_type_traits(config_.proj_type).vec_dot_type, GGML_TYPE_F32, GGML_PREC_DEFAULT);
if (config_.stride % ggml_blck_size(config_.hidden_type) == 0) {
for (int i = 0; i < qlen; i++) {
float* output_fp32_ptr = proj_output_ + i * config_.output_size + ith * config_.stride;
void* output_ptr = (uint8_t*)output + i * config_.output_size * ggml_type_size(config_.hidden_type) / ggml_blck_size(config_.hidden_type) + ith * config_.stride * ggml_type_size(config_.hidden_type) / ggml_blck_size(config_.hidden_type);
from_float(output_fp32_ptr, output_ptr, config_.stride, config_.hidden_type);
}
}
});
from_float(proj_output_.data(), output, config_.output_size, config_.hidden_type);
if (config_.stride % ggml_blck_size(config_.hidden_type) != 0) {
from_float(proj_output_, output, qlen * config_.output_size, config_.hidden_type);
}
}
void Linear::forward(int qlen, const void* input, void* output, Backend* backend) {
if (qlen <= 0) {
return;
}
int forward_len = std::min(qlen, config_.group_max_len);
forward_many(forward_len, input, output, backend);
forward(qlen - forward_len, (uint8_t*)input + forward_len * config_.input_size * ggml_type_size(config_.hidden_type) / ggml_blck_size(config_.hidden_type), (uint8_t*)output + forward_len * config_.output_size * ggml_type_size(config_.hidden_type) / ggml_blck_size(config_.hidden_type), backend);
}

View File

@ -3,7 +3,7 @@
* @Author : chenht2022
* @Date : 2024-07-12 10:07:58
* @Version : 1.0.0
* @LastEditors : chenht2022
* @LastEditors : chenht2022
* @LastEditTime : 2024-07-25 10:35:00
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
@ -22,34 +22,38 @@
#include "llama.cpp/ggml-quants.h"
#include "llama.cpp/ggml.h"
#include "llamafile/sgemm.h"
#include "shared_mem_buffer.h"
struct LinearConfig {
int input_size;
int output_size;
int stride;
int group_max_len;
void* proj;
ggml_type proj_type;
ggml_type hidden_type;
LinearConfig() {}
LinearConfig(int input_size, int output_size, int stride, void* proj, ggml_type proj_type, ggml_type hidden_type)
: input_size(input_size), output_size(output_size), stride(stride), proj(proj), proj_type(proj_type), hidden_type(hidden_type) {}
LinearConfig(int input_size, int output_size, int stride, int group_max_len, void* proj, ggml_type proj_type, ggml_type hidden_type)
: input_size(input_size), output_size(output_size), stride(stride), group_max_len(group_max_len), proj(proj), proj_type(proj_type), hidden_type(hidden_type) {}
};
class Linear {
public:
Linear(LinearConfig);
~Linear();
void warm_up(Backend* backend);
void forward(const void* input, void* output, Backend* backend);
void forward_many(int qlen, const void* input, void* output, Backend* backend);
void forward(int qlen, const void* input, void* output, Backend* backend);
private:
LinearConfig config_;
void* proj_; // [output_size * input_size ( /32 if quantized)]
std::vector<float> input_fp32_; // [input_size]
std::vector<uint8_t> proj_input_; // [input_size * 4]
std::vector<float> proj_output_; // [output_size]
float* input_fp32_; // [group_max_len * input_size]
uint8_t* proj_input_; // [group_max_len * input_size * ggml_type_size(ggml_internal_get_type_traits(proj_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(proj_type).vec_dot_type)]
float* proj_output_; // [group_max_len * output_size]
};
#endif

View File

@ -3,7 +3,7 @@
* @Author : chenht2022
* @Date : 2024-07-16 10:43:18
* @Version : 1.0.0
* @LastEditors : chenht2022
* @LastEditors : chenht2022
* @LastEditTime : 2024-07-25 10:35:04
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
@ -15,14 +15,20 @@ MLP::MLP(MLPConfig config) {
up_proj_ = config_.up_proj;
down_proj_ = config_.down_proj;
input_fp32_.resize(config_.hidden_size);
gate_input_.resize(config_.hidden_size * 4);
up_input_.resize(config_.hidden_size * 4);
gate_output_.resize(config_.intermediate_size);
up_output_.resize(config_.intermediate_size);
intermediate_fp32_.resize(config_.intermediate_size);
down_input_.resize(config_.intermediate_size * 4);
down_output_.resize(config_.hidden_size);
std::vector<std::pair<void**, uint64_t>> mem_requests;
mem_requests.push_back({(void**)&input_fp32_, sizeof(float) * config_.group_max_len * config_.hidden_size});
mem_requests.push_back({(void**)&gate_input_, config_.group_max_len * config_.hidden_size * ggml_type_size(ggml_internal_get_type_traits(config_.gate_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.gate_type).vec_dot_type)});
mem_requests.push_back({(void**)&up_input_, config_.group_max_len * config_.hidden_size * ggml_type_size(ggml_internal_get_type_traits(config_.up_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.up_type).vec_dot_type)});
mem_requests.push_back({(void**)&gate_output_, sizeof(float) * config_.group_max_len * config_.intermediate_size});
mem_requests.push_back({(void**)&up_output_, sizeof(float) * config_.group_max_len * config_.intermediate_size});
mem_requests.push_back({(void**)&intermediate_fp32_, sizeof(float) * config_.group_max_len * config_.intermediate_size});
mem_requests.push_back({(void**)&down_input_, config_.group_max_len * config_.intermediate_size * ggml_type_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type)});
mem_requests.push_back({(void**)&down_output_, sizeof(float) * config_.group_max_len * config_.hidden_size});
shared_mem_buffer.alloc(this, mem_requests);
}
MLP::~MLP() {
shared_mem_buffer.dealloc(this);
}
void MLP::warm_up(Backend* backend) {
@ -33,33 +39,33 @@ void MLP::warm_up(Backend* backend) {
input_fp32[i] = 0;
}
from_float(input_fp32.data(), input.data(), config_.hidden_size, config_.hidden_type);
forward(input.data(), output.data(), backend);
forward_many(1, input.data(), output.data(), backend);
}
static float act_fn(float x) {
return x / (1.0f + expf(-x));
}
void MLP::forward(const void* input, void* output, Backend* backend) {
void MLP::forward_many(int qlen, const void* input, void* output, Backend* backend) {
const void* gate_input_ptr;
const void* up_input_ptr;
if (config_.hidden_type == ggml_internal_get_type_traits(config_.gate_type).vec_dot_type && config_.hidden_type == ggml_internal_get_type_traits(config_.up_type).vec_dot_type) {
gate_input_ptr = up_input_ptr = input;
} else {
to_float(input, input_fp32_.data(), config_.hidden_size, config_.hidden_type);
to_float(input, input_fp32_, qlen * config_.hidden_size, config_.hidden_type);
if (ggml_internal_get_type_traits(config_.gate_type).vec_dot_type == ggml_internal_get_type_traits(config_.up_type).vec_dot_type) {
from_float(input_fp32_.data(), gate_input_.data(), config_.hidden_size, ggml_internal_get_type_traits(config_.gate_type).vec_dot_type);
gate_input_ptr = up_input_ptr = gate_input_.data();
from_float(input_fp32_, gate_input_, qlen * config_.hidden_size, ggml_internal_get_type_traits(config_.gate_type).vec_dot_type);
gate_input_ptr = up_input_ptr = gate_input_;
} else {
if (config_.hidden_type != ggml_internal_get_type_traits(config_.gate_type).vec_dot_type) {
from_float(input_fp32_.data(), gate_input_.data(), config_.hidden_size, ggml_internal_get_type_traits(config_.gate_type).vec_dot_type);
gate_input_ptr = gate_input_.data();
from_float(input_fp32_, gate_input_, qlen * config_.hidden_size, ggml_internal_get_type_traits(config_.gate_type).vec_dot_type);
gate_input_ptr = gate_input_;
} else {
gate_input_ptr = input;
}
if (config_.hidden_type != ggml_internal_get_type_traits(config_.up_type).vec_dot_type) {
from_float(input_fp32_.data(), up_input_.data(), config_.hidden_size, ggml_internal_get_type_traits(config_.up_type).vec_dot_type);
up_input_ptr = up_input_.data();
from_float(input_fp32_, up_input_, qlen * config_.hidden_size, ggml_internal_get_type_traits(config_.up_type).vec_dot_type);
up_input_ptr = up_input_;
} else {
up_input_ptr = input;
}
@ -69,35 +75,49 @@ void MLP::forward(const void* input, void* output, Backend* backend) {
backend->do_work_stealing_job(nth, [&](int task_id) {
int ith = task_id;
void* gate_proj_ptr = (uint8_t*)gate_proj_ + ith * config_.stride * config_.hidden_size * ggml_type_size(config_.gate_type) / ggml_blck_size(config_.gate_type);
float* gate_output_ptr = gate_output_.data() + ith * config_.stride;
llamafile_sgemm(config_.stride, 1, config_.hidden_size / ggml_blck_size(config_.gate_type), gate_proj_ptr, config_.hidden_size / ggml_blck_size(config_.gate_type), gate_input_ptr, config_.hidden_size / ggml_blck_size(config_.gate_type), gate_output_ptr, config_.stride, 0, 1, GGML_TASK_TYPE_COMPUTE, config_.gate_type, ggml_internal_get_type_traits(config_.gate_type).vec_dot_type, GGML_TYPE_F32, GGML_PREC_DEFAULT);
float* gate_output_ptr = gate_output_ + ith * config_.stride;
llamafile_sgemm(config_.stride, qlen, config_.hidden_size / ggml_blck_size(config_.gate_type), gate_proj_ptr, config_.hidden_size / ggml_blck_size(config_.gate_type), gate_input_ptr, config_.hidden_size / ggml_blck_size(config_.gate_type), gate_output_ptr, config_.intermediate_size, 0, 1, GGML_TASK_TYPE_COMPUTE, config_.gate_type, ggml_internal_get_type_traits(config_.gate_type).vec_dot_type, GGML_TYPE_F32, GGML_PREC_DEFAULT);
void* up_proj_ptr = (uint8_t*)up_proj_ + ith * config_.stride * config_.hidden_size * ggml_type_size(config_.up_type) / ggml_blck_size(config_.up_type);
float* up_output_ptr = up_output_.data() + ith * config_.stride;
llamafile_sgemm(config_.stride, 1, config_.hidden_size / ggml_blck_size(config_.up_type), up_proj_ptr, config_.hidden_size / ggml_blck_size(config_.up_type), up_input_ptr, config_.hidden_size / ggml_blck_size(config_.up_type), up_output_ptr, config_.stride, 0, 1, GGML_TASK_TYPE_COMPUTE, config_.up_type, ggml_internal_get_type_traits(config_.up_type).vec_dot_type, GGML_TYPE_F32, GGML_PREC_DEFAULT);
for (int i = ith * config_.stride; i < (ith + 1) * config_.stride; i++) {
intermediate_fp32_[i] = act_fn(gate_output_[i]) * up_output_[i];
}
if (config_.stride % ggml_blck_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type) == 0) {
float* intermediate_fp32_ptr = intermediate_fp32_.data() + ith * config_.stride;
void* down_input_ptr = (uint8_t*)down_input_.data() + ith * config_.stride * ggml_type_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type);
from_float(intermediate_fp32_ptr, down_input_ptr, config_.stride, ggml_internal_get_type_traits(config_.down_type).vec_dot_type);
float* up_output_ptr = up_output_ + ith * config_.stride;
llamafile_sgemm(config_.stride, qlen, config_.hidden_size / ggml_blck_size(config_.up_type), up_proj_ptr, config_.hidden_size / ggml_blck_size(config_.up_type), up_input_ptr, config_.hidden_size / ggml_blck_size(config_.up_type), up_output_ptr, config_.intermediate_size, 0, 1, GGML_TASK_TYPE_COMPUTE, config_.up_type, ggml_internal_get_type_traits(config_.up_type).vec_dot_type, GGML_TYPE_F32, GGML_PREC_DEFAULT);
for (int i = 0; i < qlen; i++) {
for (int j = ith * config_.stride; j < (ith + 1) * config_.stride; j++) {
intermediate_fp32_[i * config_.intermediate_size + j] = act_fn(gate_output_[i * config_.intermediate_size + j]) * up_output_[i * config_.intermediate_size + j];
}
if (config_.stride % ggml_blck_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type) == 0) {
float* intermediate_fp32_ptr = intermediate_fp32_ + i * config_.intermediate_size + ith * config_.stride;
void* down_input_ptr = (uint8_t*)down_input_ + i * config_.intermediate_size * ggml_type_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type) + ith * config_.stride * ggml_type_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type);
from_float(intermediate_fp32_ptr, down_input_ptr, config_.stride, ggml_internal_get_type_traits(config_.down_type).vec_dot_type);
}
}
});
if (config_.stride % ggml_blck_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type) != 0) {
from_float(intermediate_fp32_.data(), down_input_.data(), config_.intermediate_size, ggml_internal_get_type_traits(config_.down_type).vec_dot_type);
from_float(intermediate_fp32_, down_input_, qlen * config_.intermediate_size, ggml_internal_get_type_traits(config_.down_type).vec_dot_type);
}
nth = config_.hidden_size / config_.stride;
backend->do_work_stealing_job(nth, [&](int task_id) {
int ith = task_id;
void* down_proj_ptr = (uint8_t*)down_proj_ + ith * config_.stride * config_.intermediate_size * ggml_type_size(config_.down_type) / ggml_blck_size(config_.down_type);
float* down_output_ptr = down_output_.data() + ith * config_.stride;
llamafile_sgemm(config_.stride, 1, config_.intermediate_size / ggml_blck_size(config_.down_type), down_proj_ptr, config_.intermediate_size / ggml_blck_size(config_.down_type), down_input_.data(), config_.intermediate_size / ggml_blck_size(config_.down_type), down_output_ptr, config_.stride, 0, 1, GGML_TASK_TYPE_COMPUTE, config_.down_type, ggml_internal_get_type_traits(config_.down_type).vec_dot_type, GGML_TYPE_F32, GGML_PREC_DEFAULT);
float* down_output_ptr = down_output_ + ith * config_.stride;
llamafile_sgemm(config_.stride, qlen, config_.intermediate_size / ggml_blck_size(config_.down_type), down_proj_ptr, config_.intermediate_size / ggml_blck_size(config_.down_type), down_input_, config_.intermediate_size / ggml_blck_size(config_.down_type), down_output_ptr, config_.hidden_size, 0, 1, GGML_TASK_TYPE_COMPUTE, config_.down_type, ggml_internal_get_type_traits(config_.down_type).vec_dot_type, GGML_TYPE_F32, GGML_PREC_DEFAULT);
if (config_.stride % ggml_blck_size(config_.hidden_type) == 0) {
void* output_ptr = (uint8_t*)output + ith * config_.stride * ggml_type_size(config_.hidden_type) / ggml_blck_size(config_.hidden_type);
from_float(down_output_ptr, output_ptr, config_.stride, config_.hidden_type);
for (int i = 0; i < qlen; i++) {
float* output_fp32_ptr = down_output_ + i * config_.hidden_size + ith * config_.stride;
void* output_ptr = (uint8_t*)output + i * config_.hidden_size * ggml_type_size(config_.hidden_type) / ggml_blck_size(config_.hidden_type) + ith * config_.stride * ggml_type_size(config_.hidden_type) / ggml_blck_size(config_.hidden_type);
from_float(output_fp32_ptr, output_ptr, config_.stride, config_.hidden_type);
}
}
});
if (config_.stride % ggml_blck_size(config_.hidden_type) != 0) {
from_float(down_output_.data(), output, config_.hidden_size, config_.hidden_type);
from_float(down_output_, output, qlen * config_.hidden_size, config_.hidden_type);
}
}
void MLP::forward(int qlen, const void* input, void* output, Backend* backend) {
if (qlen <= 0) {
return;
}
int forward_len = std::min(qlen, config_.group_max_len);
forward_many(forward_len, input, output, backend);
forward(qlen - forward_len, (uint8_t*)input + forward_len * config_.hidden_size * ggml_type_size(config_.hidden_type) / ggml_blck_size(config_.hidden_type), (uint8_t*)output + forward_len * config_.hidden_size * ggml_type_size(config_.hidden_type) / ggml_blck_size(config_.hidden_type), backend);
}

View File

@ -3,7 +3,7 @@
* @Author : chenht2022
* @Date : 2024-07-12 10:07:58
* @Version : 1.0.0
* @LastEditors : chenht2022
* @LastEditors : chenht2022
* @LastEditTime : 2024-07-25 10:35:06
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
@ -22,11 +22,13 @@
#include "llama.cpp/ggml-quants.h"
#include "llama.cpp/ggml.h"
#include "llamafile/sgemm.h"
#include "shared_mem_buffer.h"
struct MLPConfig {
int hidden_size;
int intermediate_size;
int stride;
int group_max_len;
void* gate_proj;
void* up_proj;
void* down_proj;
@ -37,15 +39,17 @@ struct MLPConfig {
MLPConfig() {}
MLPConfig(int hidden_size, int intermediate_size, int stride, void* gate_proj, void* up_proj, void* down_proj, ggml_type gate_type, ggml_type up_type, ggml_type down_type, ggml_type hidden_type)
: hidden_size(hidden_size), intermediate_size(intermediate_size), stride(stride), gate_proj(gate_proj), up_proj(up_proj), down_proj(down_proj), gate_type(gate_type), up_type(up_type), down_type(down_type), hidden_type(hidden_type) {}
MLPConfig(int hidden_size, int intermediate_size, int stride, int group_max_len, void* gate_proj, void* up_proj, void* down_proj, ggml_type gate_type, ggml_type up_type, ggml_type down_type, ggml_type hidden_type)
: hidden_size(hidden_size), intermediate_size(intermediate_size), stride(stride), group_max_len(group_max_len), gate_proj(gate_proj), up_proj(up_proj), down_proj(down_proj), gate_type(gate_type), up_type(up_type), down_type(down_type), hidden_type(hidden_type) {}
};
class MLP {
public:
MLP(MLPConfig);
~MLP();
void warm_up(Backend* backend);
void forward(const void* input, void* output, Backend* backend);
void forward_many(int qlen, const void* input, void* output, Backend* backend);
void forward(int qlen, const void* input, void* output, Backend* backend);
private:
MLPConfig config_;
@ -53,14 +57,14 @@ class MLP {
void* up_proj_; // [intermediate_size * hidden_size ( /32 if quantized)]
void* down_proj_; // [hidden_size * intermediate_size ( /32 if quantized)]
std::vector<float> input_fp32_; // [hidden_size]
std::vector<uint8_t> gate_input_; // [hidden_size * 4]
std::vector<uint8_t> up_input_; // [hidden_size * 4]
std::vector<float> gate_output_; // [intermediate_size]
std::vector<float> up_output_; // [intermediate_size]
std::vector<float> intermediate_fp32_; // [intermediate_size]
std::vector<uint8_t> down_input_; // [intermediate_size * 4]
std::vector<float> down_output_; // [hidden_size]
float* input_fp32_; // [group_max_len * hidden_size]
uint8_t* gate_input_; // [group_max_len * hidden_size * ggml_type_size(ggml_internal_get_type_traits(gate_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(gate_type).vec_dot_type)]
uint8_t* up_input_; // [group_max_len * hidden_size * ggml_type_size(ggml_internal_get_type_traits(up_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(up_type).vec_dot_type)]
float* gate_output_; // [group_max_len * intermediate_size]
float* up_output_; // [group_max_len * intermediate_size]
float* intermediate_fp32_; // [group_max_len * intermediate_size]
uint8_t* down_input_; // [group_max_len * intermediate_size * ggml_type_size(ggml_internal_get_type_traits(down_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(down_type).vec_dot_type)]
float* down_output_; // [group_max_len * hidden_size]
};
#endif

View File

@ -1,97 +1,62 @@
/**
* @Description :
* @Description :
* @Author : chenht2022
* @Date : 2024-07-22 02:03:22
* @Version : 1.0.0
* @LastEditors : chenht2022
* @LastEditors : chenht2022
* @LastEditTime : 2024-07-25 10:35:07
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
#include "moe.h"
#include <iostream>
#include <cstdint>
uint8_t* MOE::buffer_ = nullptr;
MOE::MOE(MOEConfig config) {
config_ = config;
gate_proj_ = config_.gate_proj;
up_proj_ = config_.up_proj;
down_proj_ = config_.down_proj;
if (MOE::buffer_ == nullptr) {
uint64_t buffer_size = 0;
buffer_size += sizeof(float) * config_.group_max_len * config_.hidden_size;
buffer_size += config_.group_max_len * config_.hidden_size * ggml_type_size(ggml_internal_get_type_traits(config_.gate_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.gate_type).vec_dot_type);
buffer_size += config_.group_max_len * config_.hidden_size * ggml_type_size(ggml_internal_get_type_traits(config_.up_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.up_type).vec_dot_type);
buffer_size += config_.routed_expert_num * config_.group_max_len * config_.hidden_size * ggml_type_size(ggml_internal_get_type_traits(config_.gate_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.gate_type).vec_dot_type);
buffer_size += config_.routed_expert_num * config_.group_max_len * config_.hidden_size * ggml_type_size(ggml_internal_get_type_traits(config_.up_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.up_type).vec_dot_type);
buffer_size += sizeof(float) * config_.routed_expert_num * config_.group_max_len * config_.intermediate_size;
buffer_size += sizeof(float) * config_.routed_expert_num * config_.group_max_len * config_.intermediate_size;
buffer_size += sizeof(float) * config_.routed_expert_num * config_.group_max_len * config_.intermediate_size;
buffer_size += config_.routed_expert_num * config_.group_max_len * config_.intermediate_size * ggml_type_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type);
buffer_size += sizeof(float) * config_.routed_expert_num * config_.group_max_len * config_.hidden_size;
buffer_size += sizeof(float) * config_.group_max_len * config_.hidden_size;
buffer_ = (uint8_t*)malloc(buffer_size);
}
uint64_t offset = 0;
s_input_fp32_ = (float*)(buffer_ + offset);
offset += sizeof(float) * config_.hidden_size;
s_gate_input_ = (uint8_t*)(buffer_ + offset);
offset += config_.hidden_size * ggml_type_size(ggml_internal_get_type_traits(config_.gate_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.gate_type).vec_dot_type);
s_up_input_ = (uint8_t*)(buffer_ + offset);
offset += config_.hidden_size * ggml_type_size(ggml_internal_get_type_traits(config_.up_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.up_type).vec_dot_type);
std::vector<std::pair<void**, uint64_t>> s_mem_requests;
s_mem_requests.push_back({(void**)&s_input_fp32_, sizeof(float) * config_.hidden_size});
s_mem_requests.push_back({(void**)&s_gate_input_, config_.hidden_size * ggml_type_size(ggml_internal_get_type_traits(config_.gate_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.gate_type).vec_dot_type)});
s_mem_requests.push_back({(void**)&s_up_input_, config_.hidden_size * ggml_type_size(ggml_internal_get_type_traits(config_.up_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.up_type).vec_dot_type)});
s_gate_output_.resize(config_.routed_expert_num);
s_up_output_.resize(config_.routed_expert_num);
s_intermediate_fp32_.resize(config_.routed_expert_num);
s_down_input_.resize(config_.routed_expert_num);
s_down_output_.resize(config_.routed_expert_num);
for (int i = 0; i < config_.routed_expert_num; i++) {
s_gate_output_[i] = (float*)(buffer_ + offset);
offset += sizeof(float) * config_.intermediate_size;
s_up_output_[i] = (float*)(buffer_ + offset);
offset += sizeof(float) * config_.intermediate_size;
s_intermediate_fp32_[i] = (float*)(buffer_ + offset);
offset += sizeof(float) * config_.intermediate_size;
s_down_input_[i] = (uint8_t*)(buffer_ + offset);
offset += config_.intermediate_size * ggml_type_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type);
s_down_output_[i] = (float*)(buffer_ + offset);
offset += sizeof(float) * config_.hidden_size;
s_mem_requests.push_back({(void**)&s_gate_output_[i], sizeof(float) * config_.intermediate_size});
s_mem_requests.push_back({(void**)&s_up_output_[i], sizeof(float) * config_.intermediate_size});
s_mem_requests.push_back({(void**)&s_intermediate_fp32_[i], sizeof(float) * config_.intermediate_size});
s_mem_requests.push_back({(void**)&s_down_input_[i], config_.intermediate_size * ggml_type_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type)});
s_mem_requests.push_back({(void**)&s_down_output_[i], sizeof(float) * config_.hidden_size});
}
s_output_fp32_ = (float*)(buffer_ + offset);
s_mem_requests.push_back({(void**)&s_output_fp32_, sizeof(float) * config_.hidden_size});
shared_mem_buffer.alloc(this, s_mem_requests);
offset = 0;
std::vector<std::pair<void**, uint64_t>> m_mem_requests;
m_input_fp32_.resize(config_.group_max_len);
m_gate_input_.resize(config_.group_max_len);
m_up_input_.resize(config_.group_max_len);
for (int i = 0; i < config_.group_max_len; i++) {
m_input_fp32_[i] = (float*)(buffer_ + offset);
offset += sizeof(float) * config_.hidden_size;
m_gate_input_[i] = (uint8_t*)(buffer_ + offset);
offset += config_.hidden_size * ggml_type_size(ggml_internal_get_type_traits(config_.gate_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.gate_type).vec_dot_type);
m_up_input_[i] = (uint8_t*)(buffer_ + offset);
offset += config_.hidden_size * ggml_type_size(ggml_internal_get_type_traits(config_.up_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.up_type).vec_dot_type);
m_mem_requests.push_back({(void**)&m_input_fp32_[i], sizeof(float) * config_.hidden_size});
m_mem_requests.push_back({(void**)&m_gate_input_[i], config_.hidden_size * ggml_type_size(ggml_internal_get_type_traits(config_.gate_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.gate_type).vec_dot_type)});
m_mem_requests.push_back({(void**)&m_up_input_[i], config_.hidden_size * ggml_type_size(ggml_internal_get_type_traits(config_.up_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.up_type).vec_dot_type)});
}
m_local_gate_input_ = (uint8_t*)(buffer_ + offset);
offset += config_.routed_expert_num * config_.group_max_len * config_.hidden_size * ggml_type_size(ggml_internal_get_type_traits(config_.gate_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.gate_type).vec_dot_type);
m_local_up_input_ = (uint8_t*)(buffer_ + offset);
offset += config_.routed_expert_num * config_.group_max_len * config_.hidden_size * ggml_type_size(ggml_internal_get_type_traits(config_.up_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.up_type).vec_dot_type);
m_local_gate_output_ = (float*)(buffer_ + offset);
offset += sizeof(float) * config_.routed_expert_num * config_.group_max_len * config_.intermediate_size;
m_local_up_output_ = (float*)(buffer_ + offset);
offset += sizeof(float) * config_.routed_expert_num * config_.group_max_len * config_.intermediate_size;
m_local_intermediate_fp32_ = (float*)(buffer_ + offset);
offset += sizeof(float) * config_.routed_expert_num * config_.group_max_len * config_.intermediate_size;
m_local_down_input_ = (uint8_t*)(buffer_ + offset);
offset += config_.routed_expert_num * config_.group_max_len * config_.intermediate_size * ggml_type_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type);
m_local_down_output_ = (float*)(buffer_ + offset);
offset += sizeof(float) * config_.routed_expert_num * config_.group_max_len * config_.hidden_size;
m_mem_requests.push_back({(void**)&m_local_gate_input_, config_.routed_expert_num * config_.group_max_len * config_.hidden_size * ggml_type_size(ggml_internal_get_type_traits(config_.gate_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.gate_type).vec_dot_type)});
m_mem_requests.push_back({(void**)&m_local_up_input_, config_.routed_expert_num * config_.group_max_len * config_.hidden_size * ggml_type_size(ggml_internal_get_type_traits(config_.up_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.up_type).vec_dot_type)});
m_mem_requests.push_back({(void**)&m_local_gate_output_, sizeof(float) * config_.routed_expert_num * config_.group_max_len * config_.intermediate_size});
m_mem_requests.push_back({(void**)&m_local_up_output_, sizeof(float) * config_.routed_expert_num * config_.group_max_len * config_.intermediate_size});
m_mem_requests.push_back({(void**)&m_local_intermediate_fp32_, sizeof(float) * config_.routed_expert_num * config_.group_max_len * config_.intermediate_size});
m_mem_requests.push_back({(void**)&m_local_down_input_, config_.routed_expert_num * config_.group_max_len * config_.intermediate_size * ggml_type_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(config_.down_type).vec_dot_type)});
m_mem_requests.push_back({(void**)&m_local_down_output_, sizeof(float) * config_.routed_expert_num * config_.group_max_len * config_.hidden_size});
m_output_fp32_.resize(config_.group_max_len);
for (int i = 0; i < config_.group_max_len; i++) {
m_output_fp32_[i] = (float*)(buffer_ + offset);
offset += sizeof(float) * config_.hidden_size;
m_mem_requests.push_back({(void**)&m_output_fp32_[i], sizeof(float) * config_.hidden_size});
}
shared_mem_buffer.alloc(this, m_mem_requests);
m_local_pos_.resize(config_.group_max_len);
for (int i = 0; i < config_.group_max_len; i++) {
@ -107,6 +72,10 @@ MOE::MOE(MOEConfig config) {
m_local_down_output_ptr_.resize(config_.expert_num);
}
MOE::~MOE() {
shared_mem_buffer.dealloc(this);
}
void MOE::warm_up(Backend* backend) {
std::vector<float> input_fp32(config_.hidden_size);
std::vector<uint8_t> input(config_.hidden_size * ggml_type_size(config_.hidden_type) / ggml_blck_size(config_.hidden_type));

View File

@ -3,7 +3,7 @@
* @Author : chenht2022
* @Date : 2024-07-22 02:03:22
* @Version : 1.0.0
* @LastEditors : chenht2022
* @LastEditors : chenht2022
* @LastEditTime : 2024-07-25 10:35:10
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
@ -22,6 +22,7 @@
#include "llama.cpp/ggml-quants.h"
#include "llama.cpp/ggml.h"
#include "llamafile/sgemm.h"
#include "shared_mem_buffer.h"
struct MOEConfig {
int expert_num;
@ -48,13 +49,13 @@ struct MOEConfig {
class MOE {
public:
MOE(MOEConfig);
~MOE();
void warm_up(Backend* backend);
void forward_one(int k, const uint64_t* expert_ids, const float* weights, const void* input, void* output, Backend* backend);
void forward_many(int qlen, int k, const uint64_t* expert_ids, const float* weights, const void* input, void* output, Backend* backend);
void forward(int qlen, int k, const uint64_t* expert_ids, const float* weights, const void* input, void* output, Backend* backend);
private:
static uint8_t* buffer_;
MOEConfig config_;
void* gate_proj_; // [expert_num * intermediate_size * hidden_size ( /32 if quantized)]
void* up_proj_; // [expert_num * intermediate_size * hidden_size ( /32 if quantized)]

View File

@ -0,0 +1,55 @@
/**
* @Description :
* @Author : chenht2022
* @Date : 2024-08-05 04:49:08
* @Version : 1.0.0
* @LastEditors : chenht2022
* @LastEditTime : 2024-08-05 09:21:29
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
#include "shared_mem_buffer.h"
#include <cstdio>
SharedMemBuffer::SharedMemBuffer() {
buffer_ = nullptr;
size_ = 0;
}
SharedMemBuffer::~SharedMemBuffer() {
if (buffer_) {
free(buffer_);
}
}
void SharedMemBuffer::alloc(void* object, std::vector<std::pair<void**, uint64_t>> requests) {
uint64_t size = 0;
for (auto& request : requests) {
size += request.second;
}
if (size > size_) {
if (buffer_) {
free(buffer_);
}
buffer_ = malloc(size);
size_ = size;
for (auto& obj_requests : hist_requests_) {
for (auto& requests : obj_requests.second) {
arrange(requests);
}
}
}
arrange(requests);
hist_requests_[object].push_back(requests);
}
void SharedMemBuffer::dealloc(void* object) {
hist_requests_.erase(object);
}
void SharedMemBuffer::arrange(std::vector<std::pair<void**, uint64_t>> requests) {
uint64_t offset = 0;
for (auto& request : requests) {
*(request.first) = (uint8_t*)buffer_ + offset;
offset += request.second;
}
}

View File

@ -0,0 +1,37 @@
/**
* @Description :
* @Author : chenht2022
* @Date : 2024-08-05 04:49:08
* @Version : 1.0.0
* @LastEditors : chenht2022
* @LastEditTime : 2024-08-05 06:36:41
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
#ifndef CPUINFER_SHAREDMEMBUFFER_H
#define CPUINFER_SHAREDMEMBUFFER_H
#include <cstdint>
#include <cstdlib>
#include <map>
#include <vector>
class SharedMemBuffer {
public:
SharedMemBuffer();
~SharedMemBuffer();
void alloc(void* object, std::vector<std::pair<void**, uint64_t>> requests);
void dealloc(void* object);
private:
void* buffer_;
uint64_t size_;
std::map<void*, std::vector<std::vector<std::pair<void**, uint64_t>>>> hist_requests_;
void arrange(std::vector<std::pair<void**, uint64_t>> requests);
};
static SharedMemBuffer shared_mem_buffer;
#endif

11
ktransformers/local_chat.py Normal file → Executable file
View File

@ -31,18 +31,21 @@ import fire
from ktransformers.optimize.optimize import optimize_and_load_gguf
from ktransformers.models.modeling_deepseek import DeepseekV2ForCausalLM
from ktransformers.models.modeling_qwen2_moe import Qwen2MoeForCausalLM
from ktransformers.models.modeling_mixtral import MixtralForCausalLM
from ktransformers.util.utils import prefill_and_generate
from ktransformers.server.config.config import Config
custom_models = {
"DeepseekV2ForCausalLM": DeepseekV2ForCausalLM,
"Qwen2MoeForCausalLM": Qwen2MoeForCausalLM,
"MixtralForCausalLM": MixtralForCausalLM,
}
ktransformer_rules_dir = os.path.dirname(os.path.abspath(__file__)) + "/optimize/optimize_rules/"
default_optimize_rules ={
"DeepseekV2ForCausalLM": ktransformer_rules_dir + "DeepSeek-V2-Chat.yaml",
"Qwen2MoeForCausalLM": ktransformer_rules_dir + "Qwen2-57B-A14B-Instruct.yaml",
"MixtralForCausalLM": ktransformer_rules_dir + "Mixtral.yaml",
}
def local_chat(
@ -50,7 +53,8 @@ def local_chat(
optimize_rule_path: str = None,
gguf_path: str = None,
max_new_tokens: int = 1000,
cpu_infer: int = Config().cpu_infer
cpu_infer: int = Config().cpu_infer,
use_cuda_graph: bool = True,
):
torch.set_grad_enabled(False)
@ -64,6 +68,8 @@ def local_chat(
print("using custom modeling_xxx.py.")
if "Qwen2Moe" in config.architectures[0]: # Qwen2Moe must use flash_attention_2 to avoid overflow.
config._attn_implementation = "flash_attention_2"
if "Mixtral" in config.architectures[0]:
config._attn_implementation = "flash_attention_2"
model = custom_models[config.architectures[0]](config)
else:
model = AutoModelForCausalLM.from_config(
@ -100,7 +106,6 @@ def local_chat(
while True:
content = input("Chat: ")
# if content is num
if content == "":
content = "Please write a piece of quicksort code in C++."
@ -109,7 +114,7 @@ def local_chat(
messages, add_generation_prompt=True, return_tensors="pt"
)
torch.set_default_dtype(torch.bfloat16) # TODO: Remove this, replace dtype using config
generated = prefill_and_generate(model, tokenizer, input_tensor.cuda(), max_new_tokens)
generated = prefill_and_generate(model, tokenizer, input_tensor.cuda(), max_new_tokens, use_cuda_graph)
if __name__ == "__main__":
fire.Fire(local_chat)

View File

@ -22,13 +22,14 @@ class StaticCache(transformers.StaticCache):
The maximum batch size with which the model will be used.
max_cache_len (`int`):
The maximum sequence length with which the model will be used.
device (`torch.device`):
device (`torch.device` or `dict`):
The device on which the cache should be initialized. Should be the same as the layer.
If a `dict`, it should contain the `device` key with the device name as the value.
dtype (*optional*, defaults to `torch.float32`):
The default `dtype` to use when initializing the layer.
"""
def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device: torch.device| dict, dtype=None) -> None:
Cache.__init__(self)
self.max_batch_size = max_batch_size
self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
@ -57,11 +58,15 @@ class StaticCache(transformers.StaticCache):
self.past_tokens = []
self.num_hidden_layers = config.num_hidden_layers
for _ in range(self.num_hidden_layers):
for idx in range(self.num_hidden_layers):
# Note: `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
# breaks when updating the cache.
new_layer_key_cache = torch.zeros(key_shape, dtype=self.dtype, device=device)
new_layer_value_cache = torch.zeros(value_shape, dtype=self.dtype, device=device)
if isinstance(device, dict):
target_device = device[f"blk.{idx}.self_attn"]["generate_device"]
else:
target_device = device
new_layer_key_cache = torch.zeros(key_shape, dtype=self.dtype, device=target_device)
new_layer_value_cache = torch.zeros(value_shape, dtype=self.dtype, device=target_device)
torch._dynamo.mark_static_address(new_layer_key_cache)
torch._dynamo.mark_static_address(new_layer_value_cache)
self.key_cache.append(new_layer_key_cache)

View File

@ -1048,7 +1048,7 @@ class DeepseekV2FlashAttention2(DeepseekV2Attention):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
# Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
@ -1245,12 +1245,14 @@ class DeepseekV2DecoderLayer(nn.Module):
cache_position=cache_position,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)

File diff suppressed because it is too large Load Diff

View File

@ -10,6 +10,7 @@ from ktransformers.operators.base_operator import BaseInjectedModule
from ktransformers.util.custom_gguf import GGUFLoader
from ktransformers.util.utils import InferenceState
from transformers.configuration_utils import PretrainedConfig
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2Moe
class RotaryEmbedding(BaseInjectedModule, DeepseekV2RotaryEmbedding):
def __init__(self,
@ -17,12 +18,16 @@ class RotaryEmbedding(BaseInjectedModule, DeepseekV2RotaryEmbedding):
gguf_loader : GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
device: str = "cuda",
# device: str = "cuda",
generate_device: str = "cuda",
prefill_device: str = "cuda",
**kwargs):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, device, **kwargs)
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, generate_device, **kwargs)
self.orig_module.__init__(orig_module.dim,
orig_module.max_position_embeddings,
orig_module.base)
self.generate_device = generate_device
self.prefill_device = prefill_device
def load(self):
self.orig_module.__init__(self.orig_module.dim,
@ -36,9 +41,11 @@ class YarnRotaryEmbedding(BaseInjectedModule, DeepseekV2YarnRotaryEmbedding):
gguf_loader : GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
device: str = "cuda",
# device: str = "cuda",
generate_device: str = "cuda",
prefill_device: str = "cuda",
**kwargs):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, device, **kwargs)
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, generate_device, **kwargs)
self.orig_module.__init__(orig_module.dim,
orig_module.max_position_embeddings,
orig_module.base,
@ -49,13 +56,15 @@ class YarnRotaryEmbedding(BaseInjectedModule, DeepseekV2YarnRotaryEmbedding):
orig_module.beta_slow,
orig_module.mscale,
orig_module.mscale_all_dim)
self.generate_device = generate_device
self.prefill_device = prefill_device
def load(self):
self.orig_module.__init__(self.orig_module.dim,
self.orig_module.max_position_embeddings,
self.orig_module.base,
self.device,
self.generate_device,
self.orig_module.scaling_factor,
self.orig_module.original_max_position_embeddings,
self.orig_module.beta_fast,

View File

@ -15,7 +15,7 @@ from ktransformers.util.custom_gguf import GGUFLoader
from transformers.configuration_utils import PretrainedConfig
from transformers.cache_utils import Cache
class DeepseekV2AttentionInjected(BaseInjectedModule, DeepseekV2Attention):
class KDeepseekV2Attention(BaseInjectedModule, DeepseekV2Attention):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self,

View File

@ -0,0 +1,18 @@
import sys, os
from typing import Any
sys.path.append(os.path.join(os.path.dirname(__file__), "..", "ktransformers_ext", "build"))
sys.path.append(os.path.join(os.path.dirname(__file__), "..", "ktransformers_ext", "build", "Release"))
sys.path.append(os.path.join(os.path.dirname(__file__), "..", "ktransformers_ext", "build", "Debug"))
import cpuinfer_ext
from ktransformers.server.config.config import Config
class CPUInfer:
cpu_infer = None
def __init__(self, cpu_infer:int = Config().cpu_infer):
if CPUInfer.cpu_infer is None:
CPUInfer.cpu_infer = cpuinfer_ext.CPUInfer(cpu_infer)
def __getattribute__(self, __name: str) -> Any:
return CPUInfer.cpu_infer.__getattribute__(__name)
def __setattr__(self, __name: str, __value: Any) -> None:
return CPUInfer.cpu_infer.__setattr__(__name, __value)

View File

@ -6,7 +6,7 @@ Author : Azure-Tang, Boxin Zhang, chenht2022
Date : 2024-07-25 11:25:24
Version : 0.1.0
LastEditors : Azure
LastEditTime : 2024-07-26 09:27:41
LastEditTime : 2024-08-15 02:36:29
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
@ -31,12 +31,13 @@ from ktransformers.server.config.config import Config
from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig
from abc import ABC, abstractmethod
from ktransformers.operators.linear import QuantizedLinearMarlin, QuantizedLinearTorch, KTransformerLinear
from ktransformers.operators.linear import KLinearMarlin, KLinearTorch, KTransformersLinear
import time
from ktransformers.operators.cpuinfer import CPUInfer
# class Base(BaseInjectedModule, ABC):
class MLPExpertsBase(ABC):
class KExpertsBase(ABC):
def __init__(self, key: str, gguf_loader: GGUFLoader, config: PretrainedConfig, orig_module: nn.Module, device: str = "cuda", **kwargs):
# super().__init__(key, gguf_loader, config, orig_module, device, **kwargs)
self.key = key
@ -80,6 +81,25 @@ class MLPExpertsBase(ABC):
gate_type = self.gguf_loader.tensor_info[key + ".ffn_gate_exps.weight"]["ggml_type"]
up_type = self.gguf_loader.tensor_info[key + ".ffn_up_exps.weight"]["ggml_type"]
down_type = self.gguf_loader.tensor_info[key + ".ffn_down_exps.weight"]["ggml_type"]
elif key + ".ffn_down.0.weight" in self.gguf_loader.tensor_info:
# for supporting Mixtral-8x7B-Instuct
gate = []
up = []
down = []
for i in range(8):
gatei, upi, downi = f".ffn_gate.{i}.weight", f".ffn_up.{i}.weight", f".ffn_down.{i}.weight"
targets = [gatei, upi, downi]
tensors = self.load_multi(key, targets, device=device)
gate_it, up_it, down_it = tensors[gatei], tensors[upi], tensors[downi]
gate.append(gate_it)
up.append(up_it)
down.append(down_it)
gate = torch.stack(gate)
up = torch.stack(up)
down = torch.stack(down)
gate_type = self.gguf_loader.tensor_info[key + ".ffn_gate.0.weight"]["ggml_type"]
up_type = self.gguf_loader.tensor_info[key + ".ffn_up.0.weight"]["ggml_type"]
down_type = self.gguf_loader.tensor_info[key + ".ffn_down.0.weight"]["ggml_type"]
else:
raise ValueError(f"Experts {key} not found in gguf_loader")
res = {key:{"gate": gate, "up": up, "down": down, "gate_type": gate_type, "up_type": up_type, "down_type": down_type}}
@ -91,13 +111,14 @@ class MLPExpertsBase(ABC):
tensors[k] = self.gguf_loader.load_gguf_tensor(key + k, device=device)
return tensors
class MLPCPUExperts(MLPExpertsBase):
class KExpertsCPU(KExpertsBase):
input_tensor_cpu:Tensor = None
expert_ids_cpu:Tensor = None
weights_cpu:Tensor = None
output_cpu:Tensor = None
output_gpu:Tensor = None
CPU_INFER = cpuinfer_ext.CPUInfer(Config().cpu_infer)
output_gpu_map:dict = {} # Manage output tensor buffer on different gpu
#stream_map:dict = {} # Manage cuda stream on different gpu
CPU_INFER = CPUInfer(Config().cpu_infer)
def __init__(
self,
key: str,
@ -106,17 +127,17 @@ class MLPCPUExperts(MLPExpertsBase):
n_routed_experts: int,
orig_module: nn.Module = None,
device: str = "cpu",
out_device: str = "cuda", # this device mean which device the output should on
out_device: str = "cuda", # this device mean which device the output should on. TODO: support cpu.
**kwargs
):
super().__init__(key, gguf_loader, config, orig_module, device, **kwargs)
assert device.lower() == "cpu", "MLPCPUExperts can only be loaded on CPU"
assert device.lower() == "cpu", "KExpertsCPU can only be loaded on CPU"
self.n_routed_experts = n_routed_experts
self.out_device = out_device
def load(self, w: dict | nn.Parameter | tuple | None = None, device:str|None = None, warmup:bool = False):
if device:
assert device.lower() == "cpu", "MLPCPUExperts can only be loaded on CPU, Parameter \"device\" can be cpu or None."
assert device.lower() == "cpu", "KExpertsCPU can only be loaded on CPU, Parameter \"device\" can be cpu or None."
if w is None: w = self.load_weights()[self.key]
self.gate = w["gate"]
self.up = w["up"]
@ -155,50 +176,50 @@ class MLPCPUExperts(MLPExpertsBase):
# print(n_routed_experts, hidden_size, moe_intermediate_size)
num_experts_per_tok = self.config.num_experts_per_tok
self.moe = MOE(moe_config)
self.cpu_infer = MLPCPUExperts.CPU_INFER
self.cpu_infer = KExpertsCPU.CPU_INFER
if warmup:
self.cpu_infer.submit(self.moe.warm_up)
self.cpu_infer.submit(self.moe.warm_up())
self.cpu_infer.sync()
if MLPCPUExperts.output_gpu == None:
MLPCPUExperts.input_tensor_cpu = torch.empty((self.config.hidden_size), device="cpu", pin_memory=True)
MLPCPUExperts.expert_ids_cpu = torch.empty((num_experts_per_tok), device="cpu", dtype=torch.long, pin_memory=True)
MLPCPUExperts.weights_cpu = torch.empty((num_experts_per_tok), device="cpu", dtype=torch.float32, pin_memory=True)
MLPCPUExperts.output_cpu = torch.empty((self.config.hidden_size), device="cpu", pin_memory=True)
MLPCPUExperts.output_gpu = torch.empty((self.config.hidden_size), device=self.out_device)
if self.out_device not in KExpertsCPU.output_gpu_map:
KExpertsCPU.output_gpu_map[self.out_device] = torch.zeros((self.config.hidden_size), device=self.out_device)
if KExpertsCPU.input_tensor_cpu == None:
KExpertsCPU.input_tensor_cpu = torch.zeros((self.config.hidden_size), device="cpu", pin_memory=True)
KExpertsCPU.expert_ids_cpu = torch.zeros((num_experts_per_tok), device="cpu", dtype=torch.long, pin_memory=True)
KExpertsCPU.weights_cpu = torch.zeros((num_experts_per_tok), device="cpu", dtype=torch.float32, pin_memory=True)
KExpertsCPU.output_cpu = torch.zeros((self.config.hidden_size), device="cpu", pin_memory=True, dtype=torch.bfloat16)
def submit_for_one_decode(self, input_tensor, expert_ids, weights):
MLPCPUExperts.input_tensor_cpu.copy_(input_tensor, non_blocking=True)
MLPCPUExperts.expert_ids_cpu.copy_(expert_ids, non_blocking=True)
MLPCPUExperts.weights_cpu.copy_(weights, non_blocking=True)
self.cpu_infer.submit_with_cuda_stream(torch.cuda.current_stream().cuda_stream, self.moe.forward, 1, expert_ids.size(0), MLPCPUExperts.expert_ids_cpu.data_ptr(), MLPCPUExperts.weights_cpu.data_ptr(), MLPCPUExperts.input_tensor_cpu.data_ptr(), MLPCPUExperts.output_cpu.data_ptr())
KExpertsCPU.input_tensor_cpu.copy_(input_tensor, non_blocking=True)
KExpertsCPU.expert_ids_cpu.copy_(expert_ids, non_blocking=True)
KExpertsCPU.weights_cpu.copy_(weights, non_blocking=True)
self.cpu_infer.submit_with_cuda_stream(torch.cuda.current_stream(self.out_device).cuda_stream, self.moe.forward(1, expert_ids.size(0), KExpertsCPU.expert_ids_cpu.data_ptr(), KExpertsCPU.weights_cpu.data_ptr(), KExpertsCPU.input_tensor_cpu.data_ptr(), KExpertsCPU.output_cpu.data_ptr()))
def sync_for_one_decode(self):
self.cpu_infer.sync_with_cuda_stream(torch.cuda.current_stream().cuda_stream)
MLPCPUExperts.output_gpu.copy_(MLPCPUExperts.output_cpu, non_blocking=True)
#print("capturing experts finish")
return MLPCPUExperts.output_gpu
self.cpu_infer.sync_with_cuda_stream(torch.cuda.current_stream(self.out_device).cuda_stream)
KExpertsCPU.output_gpu_map[self.out_device].copy_(KExpertsCPU.output_cpu, non_blocking=True)
return KExpertsCPU.output_gpu_map[self.out_device]
def forward(self, input_tensor, expert_ids, weights):
# generate, capture and run cuda graph
# print(expert_ids)
if input_tensor.size(0)==1:
# TODO: this branch is unreachable, but the shape of input_tensor([1,hidden_size]) and input_tensor_cpu([hidden_size]) is not compatible
#print("capturing experts")
MLPCPUExperts.input_tensor_cpu.copy_(input_tensor, non_blocking=True)
MLPCPUExperts.expert_ids_cpu.copy_(expert_ids, non_blocking=True)
MLPCPUExperts.weights_cpu.copy_(weights, non_blocking=True)
self.cpu_infer.submit_with_cuda_stream(torch.cuda.current_stream().cuda_stream, self.moe.forward, 1, expert_ids.size(1), MLPCPUExperts.expert_ids_cpu.data_ptr(), MLPCPUExperts.weights_cpu.data_ptr(), MLPCPUExperts.input_tensor_cpu.data_ptr(), MLPCPUExperts.output_cpu.data_ptr())
KExpertsCPU.input_tensor_cpu.copy_(input_tensor, non_blocking=True)
KExpertsCPU.expert_ids_cpu.copy_(expert_ids, non_blocking=True)
KExpertsCPU.weights_cpu.copy_(weights, non_blocking=True)
self.cpu_infer.submit_with_cuda_stream(torch.cuda.current_stream().cuda_stream, self.moe.forward(1, expert_ids.size(1), KExpertsCPU.expert_ids_cpu.data_ptr(), KExpertsCPU.weights_cpu.data_ptr(), KExpertsCPU.input_tensor_cpu.data_ptr(), KExpertsCPU.output_cpu.data_ptr()))
self.cpu_infer.sync_with_cuda_stream(torch.cuda.current_stream().cuda_stream)
MLPCPUExperts.output_gpu.copy_(MLPCPUExperts.output_cpu, non_blocking=True)
#print("capturing experts finish")
return MLPCPUExperts.output_gpu
KExpertsCPU.output_gpu_map[self.out_device].copy_(KExpertsCPU.output_cpu, non_blocking=True)
return KExpertsCPU.output_gpu_map[self.out_device]
else:
input_tensor = input_tensor.contiguous().cpu()
expert_ids = expert_ids.contiguous().cpu()
weights = weights.contiguous().to(torch.float32).cpu()
output = torch.empty_like(input_tensor).contiguous()
self.cpu_infer.submit(self.moe.forward, expert_ids.size(0), expert_ids.size(1), expert_ids.data_ptr(), weights.data_ptr(), input_tensor.data_ptr(), output.data_ptr())
self.cpu_infer.submit(self.moe.forward(expert_ids.size(0), expert_ids.size(1), expert_ids.data_ptr(), weights.data_ptr(), input_tensor.data_ptr(), output.data_ptr()))
self.cpu_infer.sync()
return output.to(device=object.__getattribute__(self, "device"))
return output.to(device=object.__getattribute__(self, "out_device"))
def unload(self):
return
@ -225,12 +246,30 @@ class MLPCPUExperts(MLPExpertsBase):
gate_type = self.gguf_loader.tensor_info[key + ".ffn_gate_exps.weight"]["ggml_type"]
up_type = self.gguf_loader.tensor_info[key + ".ffn_up_exps.weight"]["ggml_type"]
down_type = self.gguf_loader.tensor_info[key + ".ffn_down_exps.weight"]["ggml_type"]
elif key + ".ffn_down.0.weight" in self.gguf_loader.tensor_info:
# for supporting Mixtral-8x7B-Instuct
gate = []
up = []
down = []
for i in range(8):
gate_it = self.gguf_loader.get_mmap_tensor(f"{key}.ffn_gate.{i}.weight")
up_it = self.gguf_loader.get_mmap_tensor(f"{key}.ffn_up.{i}.weight")
down_it = self.gguf_loader.get_mmap_tensor(f"{key}.ffn_down.{i}.weight")
gate.append(gate_it)
up.append(up_it)
down.append(down_it)
gate = np.stack(gate)
up = np.stack(up)
down = np.stack(down)
gate_type = self.gguf_loader.tensor_info[key + ".ffn_gate.0.weight"]["ggml_type"]
up_type = self.gguf_loader.tensor_info[key + ".ffn_up.0.weight"]["ggml_type"]
down_type = self.gguf_loader.tensor_info[key + ".ffn_down.0.weight"]["ggml_type"]
else:
raise ValueError(f"Experts {key} not found in gguf_loader")
res = {key:{"gate": gate, "up": up, "down": down, "gate_type": gate_type, "up_type": up_type, "down_type": down_type}}
return res
class MLPExpertsMarlin(MLPExpertsBase):
class KExpertsMarlin(KExpertsBase):
expert_num: int
loaded_experts_idx: list[int]
def __init__(
@ -251,11 +290,11 @@ class MLPExpertsMarlin(MLPExpertsBase):
self.device = device
# create empty marlin experts according to the number of experts per token
# up
self.up_projs = [QuantizedLinearMarlin(key+ "." + "ffn_up_exps", gguf_loader, config, device=device) for i in range(self.expert_num)]
self.up_projs = [KLinearMarlin(key+ "." + "ffn_up_exps", gguf_loader, config, device=device) for i in range(self.expert_num)]
# gate
self.gate_projs = [QuantizedLinearMarlin(key+ "." + "ffn_gate_exps", gguf_loader, config, device=device) for i in range(self.expert_num)]
self.gate_projs = [KLinearMarlin(key+ "." + "ffn_gate_exps", gguf_loader, config, device=device) for i in range(self.expert_num)]
# down
self.down_projs = [QuantizedLinearMarlin(key+ "." + "ffn_down_exps", gguf_loader, config, device=device) for i in range(self.expert_num)]
self.down_projs = [KLinearMarlin(key+ "." + "ffn_down_exps", gguf_loader, config, device=device) for i in range(self.expert_num)]
def load(self, w: dict | nn.Parameter | tuple | None = None, device: str | None = None, warmup: bool = False):
if device is None: device = self.device
@ -302,7 +341,7 @@ class MLPExpertsMarlin(MLPExpertsBase):
gate_type = self.gguf_loader.tensor_info[key + ".ffn_gate_exps.weight"]["ggml_type"]
up_type = self.gguf_loader.tensor_info[key + ".ffn_up_exps.weight"]["ggml_type"]
down_type = self.gguf_loader.tensor_info[key + ".ffn_down_exps.weight"]["ggml_type"]
# tensors = self.load_multi(key, [".ffn_gate_exps.weight", ".ffn_up_exps.weight", ".ffn_down_exps.weight"])
# tensors = self.load_multi(key, [".ffn_gate_exps.weight", ".ffn_up_exps.weight", ".ffn_down_exps.weight"])
res = {key:{"gate": gate, "up": up, "down": down, "gate_type": gate_type, "up_type": up_type, "down_type": down_type}}
return res
@ -320,7 +359,7 @@ class MLPExpertsMarlin(MLPExpertsBase):
outs = outs.to(device)
return outs
class MLPExpertsTorch(MLPExpertsBase):
class KExpertsTorch(KExpertsBase):
expert_num: int
loaded_experts_idx: list[int]
gate: torch.Tensor
@ -362,12 +401,12 @@ class MLPExpertsTorch(MLPExpertsBase):
self.down = None
def forward(self, hidden_states_cpu: torch.Tensor, selected_experts_cpu: torch.Tensor, routing_weights_cpu: torch.Tensor) -> torch.Tensor:
# TODO: forward should transfer data to gpu, and make the data transfering capturable using pin memory,
# just like CPUInfer MLPCPUExperts. There may be a base class of experts on cpu
hidden_states_cpu = hidden_states_cpu.to("cpu")
selected_experts_cpu = selected_experts_cpu.to("cpu")
routing_weights_cpu = routing_weights_cpu.to("cpu")
org_device = hidden_states_cpu.device
hidden_states_cpu = hidden_states_cpu.to(self.device)
selected_experts_cpu = selected_experts_cpu.to(self.device)
routing_weights_cpu = routing_weights_cpu.to(self.device)
batch_sequence_length, hidden_dim = hidden_states_cpu.size()
final_hidden_states = torch.zeros(
@ -396,37 +435,39 @@ class MLPExpertsTorch(MLPExpertsBase):
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states)
return final_hidden_states.to(org_dtype)
return final_hidden_states.to(org_dtype, device=org_device)
EXPERTS_MAP = {
"MLPCPUExperts": MLPCPUExperts,
"MLPExpertsTorch": MLPExpertsTorch,
"MLPExpertsMarlin": MLPExpertsMarlin,
"KExpertsCPU": KExpertsCPU,
"KExpertsTorch": KExpertsTorch,
"KExpertsMarlin": KExpertsMarlin,
}
class KTransformersMLPExpert(BaseInjectedModule, MLPExpertsBase):
class KTransformersExperts(BaseInjectedModule, KExpertsBase):
def __init__(self,
key: str,
gguf_loader: GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
device: str = "cuda",
# device: str = "cuda",
prefill_device:str = "cuda",
prefill_mlp_type: str | None = "MLPExpertsTorch",
prefill_op: str | None = "KExpertsTorch",
generate_device: str = "cpu",
generate_mlp_type: str | None = "MLPCPUExperts",
generate_op: str | None = "KExpertsCPU",
**kwargs):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, device, **kwargs)
MLPExpertsBase.__init__(self, key, gguf_loader, config, orig_module, device, **kwargs)
if generate_mlp_type is not None:
self.generate_experts = EXPERTS_MAP[generate_mlp_type](key, gguf_loader, config, len(orig_module), device=generate_device, **kwargs)
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, generate_device, **kwargs)
KExpertsBase.__init__(self, key, gguf_loader, config, orig_module, generate_device, **kwargs)
if generate_op is not None:
self.generate_experts = EXPERTS_MAP[generate_op](key, gguf_loader, config, len(orig_module), device=generate_device, **kwargs)
else:
self.generate_experts = None
if prefill_mlp_type is not None:
self.prefill_experts = EXPERTS_MAP[prefill_mlp_type](key, gguf_loader, config, len(orig_module), device=prefill_device, **kwargs)
if prefill_op is not None:
self.prefill_experts = EXPERTS_MAP[prefill_op](key, gguf_loader, config, len(orig_module), device=prefill_device, **kwargs)
else:
self.prefill_experts = None
self.gpu_mlp_type = prefill_mlp_type
self.cpu_mlp_type = generate_mlp_type
self.gpu_mlp_type = prefill_op
self.cpu_mlp_type = generate_op
self.mode = InferenceState.UNLOAD
def load(self, w: dict = None, mode: InferenceState = None, warmup: bool = True):
@ -479,9 +520,10 @@ class KTransformersMLPExpert(BaseInjectedModule, MLPExpertsBase):
from ktransformers.models.modeling_deepseek import DeepseekV2MoE
from ktransformers.models.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock
from ktransformers.models.modeling_mixtral import MixtralSparseMoeBlock
class Qwen2MoeSparseMoeBlockInjected(BaseInjectedModule, Qwen2MoeSparseMoeBlock):
class KQwen2MoeSparseMoeBlock(BaseInjectedModule, Qwen2MoeSparseMoeBlock):
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
""" """
orig_shape = hidden_states.shape
@ -506,16 +548,16 @@ class Qwen2MoeSparseMoeBlockInjected(BaseInjectedModule, Qwen2MoeSparseMoeBlock)
y.resize_(*orig_shape)
return y, router_logits
hidden_states_expert = hidden_states.to(self.experts.device) if isinstance(self.experts, MLPExpertsBase) else hidden_states_expert.cpu()
selected_experts_expert = selected_experts.to(self.experts.device) if isinstance(self.experts, MLPExpertsBase) else selected_experts_expert.cpu()
routing_weights_expert = routing_weights.to(self.experts.device) if isinstance(self.experts, MLPExpertsBase) else routing_weights_expert.cpu()
hidden_states_expert = hidden_states.to(self.experts.device) if isinstance(self.experts, KExpertsBase) else hidden_states_expert.cpu()
selected_experts_expert = selected_experts.to(self.experts.device) if isinstance(self.experts, KExpertsBase) else selected_experts_expert.cpu()
routing_weights_expert = routing_weights.to(self.experts.device) if isinstance(self.experts, KExpertsBase) else routing_weights_expert.cpu()
shared_expert_output = self.shared_expert(hidden_states)
shared_expert_output = (
F.sigmoid(self.shared_expert_gate(hidden_states)) * shared_expert_output
)
if isinstance(self.experts, MLPExpertsBase):
if isinstance(self.experts, KExpertsBase):
y = (
self.moe_on_cpuinfer(
hidden_states_expert, selected_experts_expert, routing_weights_expert
@ -586,8 +628,7 @@ class Qwen2MoeSparseMoeBlockInjected(BaseInjectedModule, Qwen2MoeSparseMoeBlock)
return final_hidden_states
class DeepseekV2MoEInjected(BaseInjectedModule, DeepseekV2MoE):
class KDeepseekV2MoE(BaseInjectedModule, DeepseekV2MoE):
def forward(self, hidden_states):
identity = hidden_states
orig_shape = hidden_states.shape
@ -607,7 +648,7 @@ class DeepseekV2MoEInjected(BaseInjectedModule, DeepseekV2MoE):
if self.config.n_shared_experts is not None:
y_ = self.shared_experts(identity).squeeze(0)
if isinstance(self.experts, MLPExpertsBase):
if isinstance(self.experts, KExpertsBase):
y = self.moe_on_cpuinfer(hidden_states, topk_idx, topk_weight).view(*orig_shape).to(device=hidden_states.device)
elif hidden_states.size(0) > 10:
# TODO may bugs here
@ -685,3 +726,102 @@ class DeepseekV2MoEInjected(BaseInjectedModule, DeepseekV2MoE):
.type(new_x.dtype)
)
return final_out
class KMisrtalSparseMoEBlock(BaseInjectedModule, MixtralSparseMoeBlock):
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
""" """
orig_shape = hidden_states.shape
batch_size, sequence_length, hidden_dim = hidden_states.shape
if self.training and self.jitter_noise > 0:
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
if sequence_length == 1 and hasattr(self.experts.generate_experts, "submit_for_one_decode"):
self.experts.generate_experts.submit_for_one_decode(hidden_states[0], selected_experts[0], routing_weights[0])
y = self.experts.generate_experts.sync_for_one_decode().unsqueeze(0)
y.resize_(*orig_shape)
return y, router_logits
hidden_states_expert = hidden_states.to(self.experts.device) if isinstance(self.experts, KExpertsBase) else hidden_states_expert.cpu()
selected_experts_expert = selected_experts.to(self.experts.device) if isinstance(self.experts, KExpertsBase) else selected_experts_expert.cpu()
routing_weights_expert = routing_weights.to(self.experts.device) if isinstance(self.experts, KExpertsBase) else routing_weights_expert.cpu()
if isinstance(self.experts, KExpertsBase):
y = (
self.moe_on_cpuinfer(
hidden_states_expert, selected_experts_expert, routing_weights_expert
)
.view(*orig_shape)
.to(device=hidden_states.device)
)
elif hidden_states_expert.size(0) > 10:
y = self.moe_infer(
hidden_states_expert, selected_experts_expert, routing_weights_expert, orig_shape
).to(device=hidden_states.device)
else:
y = self.moe_infer_simple(
hidden_states_expert, selected_experts_expert, routing_weights_expert
).to(device=hidden_states.device)
y.resize_(*orig_shape)
return y, router_logits
@torch.no_grad()
def moe_on_cpuinfer(self, x: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor) -> torch.Tensor:
outs = torch.empty_like(x)
outs = self.experts(x, topk_ids, topk_weight)
return outs
@torch.no_grad()
# TODO may bugs here
def moe_infer_simple(self, hidden_states_cpu: torch.Tensor, selected_experts_cpu: torch.Tensor, routing_weights_cpu: torch.Tensor) -> torch.Tensor:
'''
hidden_states_cpu: [num_tokens, hidden_size]
topk_ids, topk_weight: [num_tokens, num_selected_experts]
'''
outs = torch.zeros_like(hidden_states_cpu)
for token_idx in range(selected_experts_cpu.size(0)):
for expert_idx in range(selected_experts_cpu.size(1)):
expert = self.experts[selected_experts_cpu[token_idx, expert_idx]]
outs[token_idx] += expert.forward(hidden_states_cpu[token_idx]) * routing_weights_cpu[token_idx, expert_idx]
return outs
@torch.no_grad()
# TODO may bugs here
def moe_infer(self, hidden_states_cpu: torch.Tensor, selected_experts_cpu: torch.Tensor, routing_weights_cpu: torch.Tensor, orig_shape: tuple) -> torch.Tensor:
batch_size, sequence_length, hidden_dim = orig_shape
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states_cpu.dtype, device=hidden_states_cpu.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(selected_experts_cpu, num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states_cpu[None, top_x].reshape(-1, hidden_dim)
current_hidden_states = expert_layer.forward(current_state) * routing_weights_cpu[top_x, idx, None]
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states_cpu.dtype))
return final_hidden_states

View File

@ -6,13 +6,14 @@ Author : Azure-Tang, Boxin Zhang
Date : 2024-07-25 11:25:24
Version : 0.1.0
LastEditors : Azure
LastEditTime : 2024-07-26 09:27:53
LastEditTime : 2024-08-14 14:57:04
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
import ctypes
import torch
from torch import nn
from torch import Tensor, nn
import KTransformersOps
from ktransformers.util.custom_gguf import GGUFLoader
from ktransformers.util.utils import InferenceState
@ -25,10 +26,16 @@ from ktransformers.ktransformers_ext.operators.custom_marlin.quantize.utils.marl
from ktransformers.operators.base_operator import BaseInjectedModule
from transformers.configuration_utils import PretrainedConfig
from abc import ABC, abstractmethod
import sys, os
sys.path.append(os.path.join(os.path.dirname(__file__), "..", "ktransformers_ext", "build"))
sys.path.append(os.path.join(os.path.dirname(__file__), "..", "ktransformers_ext", "build", "Release"))
sys.path.append(os.path.join(os.path.dirname(__file__), "..", "ktransformers_ext", "build", "Debug"))
import cpuinfer_ext
from ktransformers.operators.cpuinfer import CPUInfer
from ktransformers.server.config.config import Config
#class QuantizedLinearBase(BaseInjectedModule, ABC):
class QuantizedLinearBase(ABC):
#class KLinearBase(BaseInjectedModule, ABC):
class KLinearBase(ABC):
def __init__(
self,
key: str,
@ -99,7 +106,7 @@ class QuantizedLinearBase(ABC):
pass
class QuantizedLinearTorch(QuantizedLinearBase):
class KLinearTorch(KLinearBase):
def __init__(
self,
key: str,
@ -118,6 +125,7 @@ class QuantizedLinearTorch(QuantizedLinearBase):
def forward(self, x: torch.Tensor) -> torch.Tensor:
dtype = x.dtype
out_device = x.device
# TODO: support CUDA Graph when using cpu, but CPUInfer is recommended.
x = x.to(device=self.device, dtype=self.dtype)
x = x @ self.w
if self.has_bias:
@ -128,7 +136,7 @@ class QuantizedLinearTorch(QuantizedLinearBase):
def load(self, w: dict | nn.Parameter | tuple | None = None, device: str|None = None):
if device is None: device = self.device
if w is None: w = self.load_weight(device=device)
if isinstance(w, nn.Parameter):
self.w = w.to(dtype=self.dtype).view(self.out_features, self.in_features).T
self.has_bias = False
@ -150,7 +158,7 @@ class QuantizedLinearTorch(QuantizedLinearBase):
self.bias = None
class QuantizedLinearMarlin(QuantizedLinearBase):
class KLinearMarlin(KLinearBase):
marlin_q_w: torch.Tensor
marlin_s: torch.Tensor
g_idx: torch.Tensor
@ -176,7 +184,7 @@ class QuantizedLinearMarlin(QuantizedLinearBase):
self.act_order = act_order
self.is_k_full = is_k_full
def load(self, w: dict | nn.Parameter | tuple | None = None, device: str|None = "cuda"):
def load(self, w: dict | nn.Parameter | tuple | None = None, device: str|None = None):
if device is None: device = self.device
assert device.lower() != "cpu", "Marlin quantized linear only supports GPU device"
if w is None: w = self.load_weight(device=device)
@ -200,7 +208,7 @@ class QuantizedLinearMarlin(QuantizedLinearBase):
weight, self.num_bits, self.group_size, self.act_order
)
self.workspace = MarlinWorkspace(
self.out_features, GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL
self.out_features, GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL,self.device
)
self.marlin_q_w = marlin_q_w
self.marlin_s = marlin_s
@ -243,36 +251,138 @@ class QuantizedLinearMarlin(QuantizedLinearBase):
self.g_idx = None
self.sort_indices = None
self.workspace = None
class KLinearCPUInfer(KLinearBase):
CPU_INFER = CPUInfer(Config().cpu_infer)
def __init__(
self,
key: str,
gguf_loader: GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module = None,
device: str = "cpu",
out_device: str = "cuda", # this device mean which device the output should on. TODO: support cpu.
stride = 16,
group_max_len = 1024,
**kwargs,
):
super().__init__(key, gguf_loader, config, orig_module, device, **kwargs)
self.has_bias = False
self.dtype = torch.get_default_dtype()
self.w = None
self.has_bias = False
self.stride = stride
self.group_max_len = group_max_len
self.out_device = out_device
def forward(self, x: torch.Tensor) -> torch.Tensor:
origin_shape = x.shape # [batch_size, q_len, hidden_size]
if origin_shape[1] == 1:
out_device = x.device
self.input_tensor_cpu.copy_(x, non_blocking=True)
qlen = origin_shape[1]
KLinearCPUInfer.CPU_INFER.submit_with_cuda_stream(
torch.cuda.current_stream().cuda_stream,
self.linear.forward(
qlen,
self.input_tensor_cpu.data_ptr(),
self.output_cpu.data_ptr()
)
)
KLinearCPUInfer.CPU_INFER.sync_with_cuda_stream(torch.cuda.current_stream().cuda_stream)
self.output_gpu.copy_(self.output_cpu, non_blocking=True)
if self.has_bias:
self.output_gpu += self.bias
return self.output_gpu
else:
dtype = x.dtype
out_device = x.device
x = x.to(device=self.device)
qlen = origin_shape[1]
output_shape = (*origin_shape[:-1], self.out_features)
output = torch.empty(output_shape, device=x.device, dtype=x.dtype)
KLinearCPUInfer.CPU_INFER.submit(
self.linear.forward(
qlen,
x.data_ptr(),
output.data_ptr()
)
)
KLinearCPUInfer.CPU_INFER.sync()
if self.has_bias:
output = output + self.bias
output = output.to(dtype=dtype, device=out_device)
return output
def load(self, w: dict | nn.Parameter | tuple | None = None, device: str|None = None, warmup:bool = True):
print(f"loading {self.key} to {self.device} using CPUInfer")
if device is None: device = self.device
self.load_weights(w=w, device=device)
if self.bias is not None:
self.has_bias = True
self.bias = self.bias.to(device)
weight_ptr = ctypes.addressof(
ctypes.cast(self.weight.ctypes.data, ctypes.POINTER(ctypes.c_uint64)).contents
)
config = cpuinfer_ext.linear.LinearConfig(self.in_features, self.out_features, self.stride, self.group_max_len, weight_ptr, self.weight_type, 30)
self.linear = cpuinfer_ext.linear.Linear(config)
if warmup:
KLinearCPUInfer.CPU_INFER.submit(self.linear.warm_up())
KLinearCPUInfer.CPU_INFER.sync()
self.input_tensor_cpu = torch.zeros((1, 1, self.in_features), device="cpu", pin_memory=True)
self.output_cpu = torch.zeros((1, 1, self.out_features), device="cpu", pin_memory=True, dtype=torch.bfloat16)
self.output_gpu = torch.zeros((1, 1, self.out_features), device=self.out_device)
def load_weights(self, w: dict | nn.Parameter | tuple | None = None, device: str = "cpu"):
if self.key + ".weight" in self.gguf_loader.tensor_info:
if self.key + ".bias" in self.gguf_loader.tensor_file_map:
self.weight = self.gguf_loader.get_mmap_tensor(self.key + ".weight")
self.weight_type = self.gguf_loader.tensor_info[self.key + ".weight"]["ggml_type"]
self.bias = self.gguf_loader.load_gguf_tensor(self.key + ".bias", device=device)
else:
self.weight = self.gguf_loader.get_mmap_tensor(self.key + ".weight")
self.weight_type = self.gguf_loader.tensor_info[self.key + ".weight"]["ggml_type"]
self.bias = None
else:
raise ValueError(f"Linear {self.key} not found in gguf_loader")
def unload(self):
if self.w is not None:
self.w = None
if self.has_bias:
self.bias = None
LINEAR_MAP = {
"QuantizedLinearMarlin": QuantizedLinearMarlin,
"QuantizedLinearTorch": QuantizedLinearTorch,
"QuantizedLinearTorch": QuantizedLinearTorch,
"KLinearMarlin": KLinearMarlin,
"KLinearTorch": KLinearTorch,
"KLinearCPUInfer": KLinearCPUInfer
}
class KTransformerLinear(BaseInjectedModule, QuantizedLinearBase):
class KTransformersLinear(BaseInjectedModule, KLinearBase):
def __init__(
self,
key: str,
gguf_loader: GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
device: str = "cuda",
# device: str = "cuda",
generate_device: str = "cuda",
generate_op: str| None = "QuantizedLinearMarlin",
generate_op: str| None = "KLinearMarlin",
prefill_device: str = "cuda",
prefill_op: str| None = "QuantizedLinearTorch",
prefill_op: str| None = "KLinearTorch",
**kwargs,
):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, device, **kwargs)
QuantizedLinearBase.__init__(self, key, gguf_loader, config, orig_module, device, **kwargs)
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, generate_device, **kwargs)
KLinearBase.__init__(self, key, gguf_loader, config, orig_module, generate_device, **kwargs)
# build all the linear operators
if prefill_op is not None:
assert prefill_op in LINEAR_MAP, f"linear_type {prefill_op} not supported"
if prefill_op == "QuantizedLinearMarlin" and (orig_module.in_features%GPTQ_MARLIN_MIN_THREAD_N!=0 or orig_module.out_features%GPTQ_MARLIN_MIN_THREAD_N!=0):
print(f"This linear module's in_features or out_features is not divisible by GPTQ_MARLIN_MIN_THREAD_N({GPTQ_MARLIN_MIN_THREAD_N}), using QuantizedLinearTorch instead.")
if prefill_op == "KLinearMarlin" and (orig_module.in_features%GPTQ_MARLIN_MIN_THREAD_N!=0 or orig_module.out_features%GPTQ_MARLIN_MIN_THREAD_N!=0):
print(f"This linear module's in_features or out_features is not divisible by GPTQ_MARLIN_MIN_THREAD_N({GPTQ_MARLIN_MIN_THREAD_N}), using KLinearTorch instead.")
print(f"module info: key:{key} orig_module:{orig_module}")
self.prefill_linear = QuantizedLinearTorch(key, gguf_loader, config, orig_module, prefill_device, **kwargs)
self.prefill_linear = KLinearTorch(key, gguf_loader, config, orig_module, prefill_device, **kwargs)
else:
self.prefill_linear = LINEAR_MAP[prefill_op](key, gguf_loader, config, orig_module, prefill_device, **kwargs)
else:
@ -280,16 +390,15 @@ class KTransformerLinear(BaseInjectedModule, QuantizedLinearBase):
if generate_op is not None:
assert generate_op in LINEAR_MAP, f"linear_type {generate_op} not supported"
if generate_op == "QuantizedLinearMarlin" and (orig_module.in_features%GPTQ_MARLIN_MIN_THREAD_N!=0 or orig_module.out_features%GPTQ_MARLIN_MIN_THREAD_N!=0):
print(f"This linear module's in_features or out_features is not divisible by GPTQ_MARLIN_MIN_THREAD_N({GPTQ_MARLIN_MIN_THREAD_N}), using QuantizedLinearTorch instead.")
if generate_op == "KLinearMarlin" and (orig_module.in_features%GPTQ_MARLIN_MIN_THREAD_N!=0 or orig_module.out_features%GPTQ_MARLIN_MIN_THREAD_N!=0):
print(f"This linear module's in_features or out_features is not divisible by GPTQ_MARLIN_MIN_THREAD_N({GPTQ_MARLIN_MIN_THREAD_N}), using KLinearTorch instead.")
print(f"module info: key:{key} orig_module:{orig_module}")
self.generate_op = "QuantizedLinearTorch"
self.generate_linear = QuantizedLinearTorch(key, gguf_loader, config, orig_module, generate_device, **kwargs)
self.generate_op = "KLinearTorch"
self.generate_linear = KLinearTorch(key, gguf_loader, config, orig_module, generate_device, **kwargs)
else:
self.generate_linear = LINEAR_MAP[generate_op](key, gguf_loader, config, orig_module, generate_device, **kwargs)
else:
self.generate_linear = None
self.device = device
self.mode = InferenceState.UNLOAD
def forward(self, x):

View File

@ -6,7 +6,7 @@ Author : Azure-Tang
Date : 2024-07-25 11:25:24
Version : 1.0.0
LastEditors : Azure
LastEditTime : 2024-07-26 09:27:48
LastEditTime : 2024-08-14 14:53:05
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
@ -45,6 +45,8 @@ from ktransformers.models.modeling_deepseek import BaseModelOutputWithPast, Deep
from transformers.models.qwen2_moe.configuration_qwen2_moe import Qwen2MoeConfig
from ktransformers.operators.base_operator import BaseInjectedModule
from ktransformers.util.utils import InferenceState
from ktransformers.util.custom_gguf import GGUFLoader
from transformers.configuration_utils import PretrainedConfig
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
@ -73,34 +75,6 @@ QWEN2MOE_START_DOCSTRING = r"""
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Qwen2MoE Model outputting raw hidden-states without any specific head on top.",
QWEN2MOE_START_DOCSTRING,
)
class Qwen2MoePreTrainedModel(PreTrainedModel):
config_class = Qwen2MoeConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Qwen2MoeDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
QWEN2MOE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
@ -177,13 +151,11 @@ QWEN2MOE_INPUTS_DOCSTRING = r"""
the complete sequence length.
"""
from ktransformers.util.custom_gguf import GGUFLoader
from transformers.configuration_utils import PretrainedConfig
@add_start_docstrings(
"The bare Qwen2MoE Model outputting raw hidden-states without any specific head on top.",
QWEN2MOE_START_DOCSTRING,
)
class Qwen2MoeModelPerLayerPrefill(BaseInjectedModule):
class KQwen2MoeModel(BaseInjectedModule):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2MoeDecoderLayer`]
@ -198,10 +170,13 @@ class Qwen2MoeModelPerLayerPrefill(BaseInjectedModule):
orig_module: nn.Module,
device: str = "cuda",
per_layer_prefill_intput_threshold: int = 30000, # if None, no per-layer prefill
transfer_map: dict = None,
**kwargs,
):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, device, **kwargs)
self.per_layer_prefill_intput_threshold = per_layer_prefill_intput_threshold
self.transfer_map = transfer_map
self.stream_device_map = dict()
@add_start_docstrings_to_model_forward(QWEN2MOE_INPUTS_DOCSTRING)
def forward(
@ -287,7 +262,20 @@ class Qwen2MoeModelPerLayerPrefill(BaseInjectedModule):
all_router_logits = () if output_router_logits else None
next_decoder_cache = None
for decoder_layer in self.layers:
for i, decoder_layer in enumerate(self.layers):
if self.transfer_map is not None and i in self.transfer_map:
prev_stream = torch.cuda.current_stream()
cur_device = self.transfer_map[i]
if cur_device not in self.stream_device_map:
self.stream_device_map[cur_device] = torch.cuda.Stream(cur_device)
torch.cuda.set_device(cur_device)
self.stream_device_map[cur_device].wait_stream(prev_stream)
torch.cuda.set_stream(self.stream_device_map[cur_device])
hidden_states = hidden_states.to(self.transfer_map[i], non_blocking = True)
causal_mask = causal_mask.to(self.transfer_map[i], non_blocking = True) if causal_mask is not None else None
position_ids = position_ids.to(self.transfer_map[i], non_blocking = True) if position_ids is not None else None
cache_position = cache_position.to(self.transfer_map[i], non_blocking = True) if cache_position is not None else None
if output_hidden_states:
all_hidden_states += (hidden_states,)
@ -463,7 +451,7 @@ DeepseekV2_INPUTS_DOCSTRING = r"""
"""
class DeepseekV2ModelPerLayerPrefill(BaseInjectedModule):
class KDeepseekV2Model(BaseInjectedModule):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV2DecoderLayer`]
@ -478,10 +466,13 @@ class DeepseekV2ModelPerLayerPrefill(BaseInjectedModule):
orig_module: nn.Module,
device: str = "cuda",
per_layer_prefill_intput_threshold: int = 30000, # if None, no per-layer prefill
transfer_map: dict = None,
**kwargs,
):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, device, **kwargs)
self.per_layer_prefill_intput_threshold = per_layer_prefill_intput_threshold
self.transfer_map = transfer_map
self.stream_device_map = dict()
@add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
def forward(
@ -584,7 +575,20 @@ class DeepseekV2ModelPerLayerPrefill(BaseInjectedModule):
t_cpu = 0
t_f = 0
for decoder_layer in self.layers:
for i, decoder_layer in enumerate(self.layers):
if self.transfer_map is not None and i in self.transfer_map:
prev_stream = torch.cuda.current_stream()
cur_device = self.transfer_map[i]
if cur_device not in self.stream_device_map:
self.stream_device_map[cur_device] = torch.cuda.Stream(cur_device)
torch.cuda.set_device(cur_device)
self.stream_device_map[cur_device].wait_stream(prev_stream)
torch.cuda.set_stream(self.stream_device_map[cur_device])
hidden_states = hidden_states.to(self.transfer_map[i], non_blocking = True)
causal_mask = causal_mask.to(self.transfer_map[i], non_blocking = True) if causal_mask is not None else None
position_ids = position_ids.to(self.transfer_map[i], non_blocking = True) if position_ids is not None else None
cache_position = cache_position.to(self.transfer_map[i], non_blocking = True) if cache_position is not None else None
if output_hidden_states:
all_hidden_states += (hidden_states,)

View File

@ -1,6 +1,6 @@
'''
Description :
Author : Boxin Zhang
Author : Boxin Zhang, Azure-Tang
Version : 0.1.0
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
@ -15,6 +15,7 @@ from transformers.configuration_utils import PretrainedConfig
from ktransformers.util.custom_gguf import GGUFLoader, translate_name_to_gguf
from ktransformers.util.utils import set_module, load_weights
import itertools
import copy
def inject(module, local_optimization_dict, model_config:AutoConfig ,gguf_loader:GGUFLoader, prefix=''):
for name, child in module._modules.items():
@ -22,18 +23,20 @@ def inject(module, local_optimization_dict, model_config:AutoConfig ,gguf_loader
child_prefix = prefix + name
if child_prefix in local_optimization_dict:
inject_module_meta=local_optimization_dict[child_prefix]
if isinstance(inject_module_meta, Mapping):
if inject_module_meta["class"] != "default":
import_path = inject_module_meta["class"].split(".")
import_module_name = ".".join(import_path[:-1])
gguf_loader.tensor_device_map[inject_module_meta["key"]] = inject_module_meta["kwargs"] if "kwargs" in inject_module_meta else dict()
import_class_name = import_path[-1]
module_cls=getattr(__import__(import_module_name, fromlist=[""]), import_class_name)
print(f"Injecting {child_prefix} as", import_module_name, ".", import_class_name)
inject_module=module_cls(key = inject_module_meta["key"], gguf_loader = gguf_loader, config = model_config, orig_module=child, device = inject_module_meta["device"], **inject_module_meta["kwargs"])
inject_module=module_cls(key = inject_module_meta["key"], gguf_loader = gguf_loader, config = model_config, orig_module=child, **inject_module_meta["kwargs"])
set_module(module, name, inject_module)
elif isinstance(inject_module_meta, str):
assert inject_module_meta=="default", "for str inject_module_meta, only support \"default\"."
elif inject_module_meta["class"] == "default":
print(f"Injecting {child_prefix} as default")
gguf_loader.tensor_device_map[inject_module_meta["key"]] = inject_module_meta["kwargs"] if "kwargs" in inject_module_meta else dict()
else:
raise Exception("inject_module_meta must be a dict or str")
raise Exception("inject_module_meta[\"class\"] must be \"default\" or a class path")
child_prefix += "."
child_optimization_dict = {k: v for k, v in local_optimization_dict.items() if k.startswith(child_prefix)}
inject(child, child_optimization_dict, model_config, gguf_loader, child_prefix)
@ -55,8 +58,9 @@ def gen_optimize_config(module: nn.Module, out_data: Mapping, rule_list: List, p
#print("gen_optimize_config", prefix, module_name, translated_name)
recursive = True
for rule in rule_list:
#print(rule)
match_meta = rule["match"]
if "class" not in match_meta and "name" not in match_meta:
raise Exception("match must have at least one of \"class\" and \"name\"")
if "class" in match_meta:
import_path = match_meta["class"].split(".")
import_module_name = ".".join(import_path[:-1])
@ -67,16 +71,30 @@ def gen_optimize_config(module: nn.Module, out_data: Mapping, rule_list: List, p
if "name" in match_meta:
if re.search(match_meta["name"], module_name) is None:
continue
replace_meta = rule["replace"]
out_data[module_name]={"key": translated_name,
"class": replace_meta["class"],
"device": replace_meta["device"] if "device" in replace_meta else default_device,
"kwargs": replace_meta["kwargs"] if "kwargs" in replace_meta else dict()}
if "replace" not in rule:
raise Exception("replace must be in rule")
if "replace" in rule:
replace_meta = rule["replace"]
if module_name not in out_data:
out_data[module_name]={"key": translated_name,
"class": replace_meta["class"] if "class" in replace_meta else "default",
# "device": replace_meta["device"] if "device" in replace_meta else default_device,
"kwargs": copy.deepcopy(replace_meta["kwargs"]) if "kwargs" in replace_meta else dict()}
else:
if out_data[module_name]["class"] == "default":
out_data[module_name]["class"] = replace_meta["class"] if "class" in replace_meta else "default"
out_data[module_name]["kwargs"].update(copy.deepcopy(replace_meta["kwargs"]) if "kwargs" in replace_meta else dict())
if "recursive" in rule:
recursive = bool(rule["recursive"])
break
if module_name not in out_data:
out_data[module_name]="default"
out_data[module_name]= {
"class": "default",
"key": translated_name,
"kwargs": {"generate_device": default_device,
"prefill_device": default_device}
}
#print(out_data[module_name])
#input()
@ -88,6 +106,14 @@ def gen_optimize_config(module: nn.Module, out_data: Mapping, rule_list: List, p
gen_optimize_config(child, out_data, rule_list, child_prefix)
def translate_model_config(model_config: PretrainedConfig):
# for supporting some special model
if model_config.model_type == "mixtral":
model_config.moe_intermediate_size = model_config.intermediate_size
return model_config
def optimize_and_load_gguf(module: nn.Module, rule_file: str, gguf_path: str, model_config: PretrainedConfig, default_device: str = "cuda:0"):
with open(rule_file, 'r', encoding='utf-8') as f:
rule_list = yaml.load(f.read(), Loader=yaml.FullLoader)
@ -95,8 +121,12 @@ def optimize_and_load_gguf(module: nn.Module, rule_file: str, gguf_path: str, mo
optimize_config = dict()
gen_optimize_config(module, optimize_config, rule_list, default_device = default_device)
model_config = translate_model_config(model_config)
gguf_loader=GGUFLoader(gguf_path)
with torch.device("meta"):
inject(module, optimize_config, model_config, gguf_loader)
load_weights(module, gguf_loader)
module.gguf_loader = gguf_loader
del_meta(module)
torch.cuda.empty_cache()

View File

@ -0,0 +1,228 @@
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
- match:
name: "^model\\.layers\\.([0-9])\\."
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([1][0-9])\\."
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.([2][0-9])\\."
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
kwargs:
generate_device: "cuda:2"
prefill_device: "cuda:2"
- match:
name: "^model\\.layers\\.([345][0-9])\\."
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
kwargs:
generate_device: "cuda:3"
prefill_device: "cuda:3"
- match:
name: "^model\\.layers\\.([0-9])\\.(?!self_attn).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.([1][0-9])\\.(?!self_attn).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.([2][0-9])\\.(?!self_attn).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda:2"
prefill_device: "cuda:2"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.([345][0-9])\\.(?!self_attn).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda:3"
prefill_device: "cuda:3"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.([0-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([1][0-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.([2][0-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda:2"
prefill_device: "cuda:2"
- match:
name: "^model\\.layers\\.([345][0-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda:3"
prefill_device: "cuda:3"
- match:
name: "^model\\.layers\\.([0-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda:0"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda:0"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.([1][0-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda:1"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda:1"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.([2][0-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda:2"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda:2"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.([345][0-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda:3"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda:3"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.([0-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([1][0-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.([2][0-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda:2"
prefill_device: "cuda:2"
- match:
name: "^model\\.layers\\.([345][0-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda:3"
prefill_device: "cuda:3"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
transfer_map:
10: "cuda:1"
20: "cuda:2"
30: "cuda:3"
- match:
name: "^model\\.layers\\.([0-9])\\."
replace:
class: "default"
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "(^model\\.layers\\.([1][0-9])\\.)"
replace:
class: "default"
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "(^model\\.layers\\.([2][0-9])\\.)"
replace:
class: "default"
kwargs:
generate_device: "cuda:2"
prefill_device: "cuda:2"
- match:
name: "(^model\\.layers\\.([345][0-9])\\.)|(^model.norm)|(^lm_head)"
replace:
class: "default"
kwargs:
generate_device: "cuda:3"
prefill_device: "cuda:3"

View File

@ -0,0 +1,126 @@
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\."
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([345][0-9])\\."
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.(?!self_attn).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.([345][0-9])\\.(?!self_attn).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([345][0-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda:0"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda:0"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.([345][0-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda:1"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda:1"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([345][0-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
transfer_map:
30: "cuda:1"
- match:
name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\."
replace:
class: "default"
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "(^model\\.layers\\.([345][0-9])\\.)|(model.norm)|(lm_head)"
replace:
class: "default"
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"

View File

@ -2,40 +2,49 @@
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\.(?!.*self_attn).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformerLinear # optimized Kernel on quantized data types
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "QuantizedLinearMarlin"
prefill_op: "QuantizedLinearTorch"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.DeepseekV2MoEInjected # mlp module with custom forward function
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersMLPExpert # custom MoE Kernel with expert paralleism
device: "cpu" # which devices to load this module when initializing
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda"
prefill_mlp_type: "MLPExpertsTorch"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_mlp_type: "MLPCPUExperts"
generate_op: "KExpertsCPU"
out_device: "cuda"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\..*\\.self_attn$"
replace:
class: ktransformers.operators.attention.DeepseekV2AttentionInjected # optimized MLA implementation
- match:
name: "^model$"
replace:
class: "ktransformers.operators.layer_wise_prefill.DeepseekV2ModelPerLayerPrefill"
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"

View File

@ -0,0 +1,126 @@
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
- match:
name: "^model\\.layers\\.(0|[1-9])\\."
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([12][0-9])\\."
class: ktransformers.models.modeling_deepseek.DeepseekV2YarnRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.YarnRotaryEmbedding
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.(0|[1-9])\\.(?!self_attn).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.([12][0-9])\\.(?!self_attn).*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.(0|[1-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([12][0-9])\\.mlp$"
class: ktransformers.models.modeling_deepseek.DeepseekV2MoE
replace:
class: ktransformers.operators.experts.KDeepseekV2MoE # mlp module with custom forward function
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.(0|[1-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda:0"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda:0"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.([12][0-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
kwargs:
prefill_device: "cuda:1"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda:1"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.(0|[1-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([12][0-9])\\.self_attn$"
replace:
class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
transfer_map:
10: "cuda:1"
- match:
name: "^model\\.layers\\.(0|[1-9])\\."
replace:
class: "default"
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "(^model\\.layers\\.([12][0-9])\\.)|(model.norm)|(lm_head)"
replace:
class: "default"
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"

View File

@ -0,0 +1,49 @@
- match:
class: ktransformers.models.modeling_mixtral.MixtralRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.RotaryEmbedding
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\..*$"
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.block_sparse_moe$"
class: ktransformers.models.modeling_mixtral.MixtralSparseMoeBlock
replace:
class: ktransformers.operators.experts.KMisrtalSparseMoEBlock
- match:
name: "^model\\.layers\\..*\\.block_sparse_moe\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts
kwargs:
prefill_device: "cuda"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
- match:
name: "^model\\.layers\\..*\\."
replace:
class: "default"
kwargs:
generate_device: "cuda"
prefill_device: "cuda"

View File

@ -0,0 +1,112 @@
- match:
name: "^model\\.layers\\.([012])\\."
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.RotaryEmbedding
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([012])$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.([012])\\.mlp$"
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeSparseMoeBlock
replace:
class: ktransformers.operators.experts.KQwen2MoeSparseMoeBlock # mlp module with custom forward function
- match:
name: "^model\\.layers\\.([012])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
# device: "cpu" # which devices to load this module when initializing
kwargs:
prefill_device: "cuda:0"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda:0"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model\\.layers\\.([12][0-9]|[3-9])\\."
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.RotaryEmbedding
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model\\.layers\\.([12][0-9]|[3-9])$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\.([12][0-9]|[3-9])\\.mlp$"
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeSparseMoeBlock
replace:
class: ktransformers.operators.experts.KQwen2MoeSparseMoeBlock # mlp module with custom forward function
- match:
name: "^model\\.layers\\.([12][0-9]|[3-9])\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
# device: "cpu" # which devices to load this module when initializing
kwargs:
prefill_device: "cuda:1"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_op: "KExpertsCPU"
out_device: "cuda:1"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
- match:
name: "(^model.norm)|(^lm_head)"
replace:
class: "default"
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"
- match:
name: "^model$"
replace:
class: "ktransformers.operators.models.KQwen2MoeModel"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
transfer_map:
3: "cuda:1"
- match:
name: "^model\\.layers\\.([012])\\."
replace:
class: "default"
kwargs:
generate_device: "cuda:0"
prefill_device: "cuda:0"
- match:
name: "^model\\.layers\\.([12][0-9]|[3-9])\\."
replace:
class: "default"
kwargs:
generate_device: "cuda:1"
prefill_device: "cuda:1"

View File

@ -2,36 +2,56 @@
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeRotaryEmbedding
replace:
class: ktransformers.operators.RoPE.RotaryEmbedding
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\..*$" # regular expression
class: torch.nn.Linear # only match modules matching name and class simultaneously
replace:
class: ktransformers.operators.linear.KTransformerLinear # optimized Kernel on quantized data types
class: ktransformers.operators.linear.KTransformersLinear # optimized Kernel on quantized data types
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
generate_op: "QuantizedLinearMarlin"
prefill_op: "QuantizedLinearTorch"
generate_op: "KLinearMarlin"
prefill_op: "KLinearTorch"
- match:
name: "^model\\.layers\\..*\\.mlp$"
class: ktransformers.models.modeling_qwen2_moe.Qwen2MoeSparseMoeBlock
replace:
class: ktransformers.operators.experts.Qwen2MoeSparseMoeBlockInjected # mlp module with custom forward function
class: ktransformers.operators.experts.KQwen2MoeSparseMoeBlock # mlp module with custom forward function
kwargs:
generate_device: "cuda"
prefill_device: "cuda"
- match:
name: "^model\\.layers\\..*\\.mlp\\.experts$"
replace:
class: ktransformers.operators.experts.KTransformersMLPExpert # custom MoE Kernel with expert paralleism
device: "cpu" # which devices to load this module when initializing
class: ktransformers.operators.experts.KTransformersExperts # custom MoE Kernel with expert paralleism
# device: "cpu" # which devices to load this module when initializing
kwargs:
prefill_device: "cuda"
prefill_mlp_type: "MLPExpertsTorch"
prefill_op: "KExpertsTorch"
generate_device: "cpu"
generate_mlp_type: "MLPCPUExperts"
generate_op: "KExpertsCPU"
out_device: "cuda"
recursive: False # don't recursively inject submodules of this module
- match:
name: "^model$"
replace:
class: "ktransformers.operators.layer_wise_prefill.Qwen2MoeModelPerLayerPrefill"
class: "ktransformers.operators.models.KQwen2MoeModel"
kwargs:
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
class: "default"
kwargs:
generate_device: "cpu"
prefill_device: "cpu"
- match:
name: "^model\\.layers\\..*\\."
replace:
class: "default"
kwargs:
generate_device: "cuda"
prefill_device: "cuda"

View File

@ -6,6 +6,7 @@ from ktransformers.optimize.optimize import optimize_and_load_gguf
from ktransformers.models.custom_cache import StaticCache
from ktransformers.util.cuda_graph_runner import CUDAGraphRunner
from ktransformers.local_chat import custom_models, default_optimize_rules
from ktransformers.util.utils import get_device
class KTransformersThreadContext(TransformersThreadContext):
@ -48,8 +49,11 @@ class KTransformersInterface(TransformersInterface):
def decode_one_tokens(self):
if not hasattr(self, "cuda_graph_runner"):
device_map = self.model.gguf_loader.tensor_device_map
torch_device = get_device('blk.0.self_attn', device_map)
torch_device = "cuda:0" if torch_device == "cuda" else torch_device
self.cuda_graph_runner = CUDAGraphRunner()
self.cuda_graph_runner.capture(self.model, self.current_ids, self.active_cache_position.unsqueeze(0), self.active_cache_position, self.cache, return_dict=False, use_cache=True)
self.cuda_graph_runner.capture(self.model, self.current_ids, self.active_cache_position.unsqueeze(0), self.active_cache_position, self.cache, main_device=torch_device, return_dict=False, use_cache=True)
if hasattr(self, "cuda_graph_runner"):
logits = self.cuda_graph_runner(self.current_ids, self.active_cache_position.unsqueeze(0), self.active_cache_position)

View File

@ -1,15 +1,12 @@
import os
os.environ["CUDA_VISIBLE_DEVICES"]="1"
# os.environ["CUDA_VISIBLE_DEVICES"]="1,2"
# add path
import sys
current_path = os.path.abspath(os.path.dirname(__file__))
sys.path.append(current_path+"/../..")
import pycuda.autoinit
import pycuda.driver as cuda
from pycuda.compiler import SourceModule
import numpy as np
# from ktransformers.operators.linear import KTransformerLinear, QuantizedLinearMarlin
# from ktransformers.operators.experts import KTransformersMLPExpert, MLPExpertsTorch
# from ktransformers.operators.linear import KTransformersLinear, KLinearMarlin
# from ktransformers.operators.experts import KTransformersExperts, KExpertsTorch
from ktransformers.util.custom_gguf import GGUFLoader
import torch
import KTransformersOps
@ -18,36 +15,23 @@ import time
from transformers import (
AutoConfig,
)
import os
# CUDA_LAUNCH_BLOCKING=1
os.environ["CUDA_LAUNCH_BLOCKING"]="1"
gguf_config = GGUFLoader("/data/Qwen2-57B-A14B-Instruct-GGUF/q4_k_m")
model_name = "/data/Qwen2-57B-A14B-Instruct"
key = "blk.0."
target = "ffn_down_exps.weight"
t1 = time.time()
q_weight_cpu = gguf_config.load_gguf_tensor(key+target, "cpu")
# q_weight_cpu = torch.from_numpy(q_weight_cpu)
t2 = time.time()
q_weight_gpu = gguf_config.load_gguf_tensor(key+target, "cuda")
t3 = time.time()
print()
allclose = torch.allclose(q_weight_cpu, q_weight_gpu.cpu().to(torch.float32), atol=1e-6)
print(f"Q6k {key+target}")
print("load gguf tensor from cpu cost: ", t2-t1)
print("load gguf tensor from gpu cost: ", t3-t2)
print("allclose: ", allclose)
# Q4k
key = "blk.1."
target = "ffn_up_shexp.weight"
target = "attn_q.weight"
t1 = time.time()
q_weight_cpu = gguf_config.load_gguf_tensor(key+target, "cpu")
# q_weight_cpu = torch.from_numpy(q_weight_cpu)
t2 = time.time()
q_weight_gpu = gguf_config.load_gguf_tensor(key+target, "cuda")
q_weight_gpu = gguf_config.load_gguf_tensor(key+target, "cuda:0")
t3 = time.time()
print()
allclose = torch.allclose(q_weight_cpu, q_weight_gpu.cpu(), atol=1e-6)
@ -55,3 +39,20 @@ print(f"Q4k {key+target}")
print("load gguf tensor from cpu cost: ", t2-t1)
print("load gguf tensor from gpu cost: ", t3-t2)
print("allclose: ", allclose)
# Q6k
key = "blk.0."
target = "ffn_down_exps.weight"
t1 = time.time()
q_weight_cpu = gguf_config.load_gguf_tensor(key+target, "cpu")
t2 = time.time()
q_weight_gpu = gguf_config.load_gguf_tensor(key+target, "cuda:0")
t3 = time.time()
print()
allclose = torch.allclose(q_weight_cpu, q_weight_gpu.cpu().to(torch.float32), atol=1e-6)
print(f"Q6k {key+target}")
print("load gguf tensor from cpu cost: ", t2-t1)
print("load gguf tensor from gpu cost: ", t3-t2)
print("allclose: ", allclose)

View File

@ -7,11 +7,11 @@ import pycuda.autoinit
import pycuda.driver as cuda
from pycuda.compiler import SourceModule
import numpy as np
from ktransformers.operators.linear import KTransformerLinear, QuantizedLinearMarlin
from ktransformers.operators.experts import KTransformersMLPExpert, MLPExpertsTorch
from ktransformers.operators.linear import KTransformersLinear, KLinearMarlin
from ktransformers.operators.experts import KTransformersExperts, KExpertsTorch
from ktransformers.util.custom_gguf import GGUFLoader, dequantize_q4_k_gpu, dequantize_q4_k
import torch
import CudaOps
import KTransformersOps
torch.set_default_dtype(torch.bfloat16)
import time
from transformers import (

View File

@ -21,6 +21,7 @@ class CUDAGraphRunner:
position_ids,
cache_position,
past_key_values,
main_device,
**kwargs,
) -> None:
assert self.graph is None
@ -29,15 +30,24 @@ class CUDAGraphRunner:
self.graph = torch.cuda.CUDAGraph()
#self.graph.enable_debug_mode()
self.model = model
inputs_embeds = model.model.embed_tokens(cur_token.to("cpu")).to("cuda")
with torch.cuda.graph(self.graph):
inputs_embeds = model.model.embed_tokens(cur_token.to("cpu")).to(main_device)
# torch.cuda.set_device can't set "cuda", must have a index
if main_device == "cuda":
main_device = "cuda:0"
torch.cuda.set_device(main_device)
self.main_device = main_device
capture_stream = torch.cuda.Stream()
with torch.cuda.graph(self.graph, stream = capture_stream):
logits=model(inputs_embeds=inputs_embeds,
position_ids=position_ids,
cache_position=cache_position,
past_key_values=past_key_values,
**kwargs)[0]
capture_stream.wait_stream(torch.cuda.current_stream())
torch.cuda.set_device(main_device)
torch.cuda.set_stream(capture_stream)
past_key_values.change_seq_length(-1)
torch.cuda.synchronize()
torch.cuda.synchronize(self.main_device)
#self.graph.debug_dump("cuda_graph_hooked.dot")
# Save the input and output buffers.
@ -65,7 +75,7 @@ class CUDAGraphRunner:
#print("begin replay")
#time.sleep(1)
self.graph.replay()
torch.cuda.synchronize()
torch.cuda.synchronize(self.main_device)
# Return the output tensor.
return self.output_buffers["logits"]

View File

@ -5,8 +5,8 @@ Description :
Author : Azure-Tang, Boxin Zhang, chenht2022
Date : 2024-07-26 08:48:54
Version : 1.0.0
LastEditors : Azure
LastEditTime : 2024-07-26 09:28:25
LastEditors : kkk1nak0
LastEditTime : 2024-08-12 07:21:55
Adapted from https://github.com/99991/pygguf/blob/main/gguf.py
Copyright (c) 2023-2024 The ggml authors
Copyright (c) 2024 Thomas Germer
@ -18,6 +18,7 @@ Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
import struct
import warnings
import numpy as np
import re
import numpy.typing as npt
from typing import Sequence
import os
@ -168,6 +169,7 @@ class GGUFLoader:
self.tensor_file_map = {}
self.file_data_map = {}
self.gguf_file_meta = {}
self.tensor_device_map = {}
# Walk through all the .gguf files in the directory
for root, dirs, files in os.walk(gguf_path):
@ -292,8 +294,19 @@ class GGUFLoader:
else:
values = GGML_DEQUANTIZE[ggml_name](data)
values = torch.from_numpy(values)
return values.view(shape[::-1])
values = values.view(shape[::-1])
if "attn_q" in name and self.gguf_file_meta['general.architecture'] in ["llama"]:
n_head = self.gguf_file_meta['llama.attention.head_count']
values = (values.reshape(n_head, values.shape[0] // n_head // 2, 2, *values.shape[1:])
.swapaxes(1, 2)
.reshape(values.shape))
elif "attn_k" in name and self.gguf_file_meta['general.architecture'] in ["llama"]:
n_head = self.gguf_file_meta['llama.attention.head_count_kv']
values = (values.reshape(n_head, values.shape[0] // n_head // 2, 2, *values.shape[1:])
.swapaxes(1, 2)
.reshape(values.shape))
return values
def read_value(f, data_type):
if data_type == DATA_TYPES["string"]:
@ -377,8 +390,14 @@ def dequantize_q2_k(data):
return d * (scales & 15) * (tmp & 3) - dmin * (scales >> 4)
def dequantize_q2_k_gpu(data):
raise NotImplementedError()
def dequantize_q2_k_gpu(data, device:str ="cuda"):
block_size = GGML_BLOCK_SIZES["Q2_K"]
data = np.frombuffer(data, dtype=data.dtype)
device = torch.device(device)
# TODO: this and from_numpy in other functions will cause a warning saying that numpy is not writable,
# the best way to fix this is transfer ptr to KTransformersOps instead of Tensor.
data = torch.from_numpy(data)
return KTransformersOps.dequantize_q2_k(data, block_size, device)
def dequantize_q3_k(data):
# C implementation
@ -422,8 +441,14 @@ def dequantize_q3_k(data):
(((qs[:, 48:64] >> 6) & 3) - bits[:, 16:, 7])
], axis=1)
def dequantize_q3_k_gpu(data):
raise NotImplementedError()
def dequantize_q3_k_gpu(data, device:str ="cuda"):
block_size = GGML_BLOCK_SIZES["Q3_K"]
data = np.frombuffer(data, dtype=data.dtype)
device = torch.device(device)
# TODO: this and from_numpy in other functions will cause a warning saying that numpy is not writable,
# the best way to fix this is transfer ptr to KTransformersOps instead of Tensor.
data = torch.from_numpy(data)
return KTransformersOps.dequantize_q3_k(data, block_size, device)
def dequantize_q4_k(data):
# C implementation
@ -511,9 +536,14 @@ def dequantize_q5_k(data):
d8 * (qs_hi_4[:, 3] + (bits[:, :, 7] << 4)) - m8,
], axis=1)
def dequantize_q5_k_gpu(data):
raise NotImplementedError()
def dequantize_q5_k_gpu(data, device:str ="cuda"):
block_size = GGML_BLOCK_SIZES["Q5_K"]
data = np.frombuffer(data, dtype=data.dtype)
device = torch.device(device)
# TODO: this and from_numpy in other functions will cause a warning saying that numpy is not writable,
# the best way to fix this is transfer ptr to KTransformersOps instead of Tensor.
data = torch.from_numpy(data)
return KTransformersOps.dequantize_q5_k(data, block_size, device)
def dequantize_q6_k(data):
# C implementation
@ -570,7 +600,7 @@ def dequantize_q6_k_gpu(data: np.ndarray, device:str = "cuda"):
num_blocks = len(data) // block_size
data = np.frombuffer(data, dtype=data.dtype)
data = torch.from_numpy(data)
return KTransformersOps.dequantize_q6_k(data, 210, device)
return KTransformersOps.dequantize_q6_k(data, block_size, device)
def dequantize_q4_0(data):
# C implementation
@ -679,7 +709,34 @@ GGML_DEQUANTIZE_GPU = {
"Q6_K": dequantize_q6_k_gpu,
}
def translate_name_to_gguf_mixtral(name):
replacement_template = {
"w1.weight": "ffn_gate",
"w2.weight": "ffn_down",
"w3.weight": "ffn_up"
}
pattern = re.compile(r"model.layers\.(\d+)\.block_sparse_moe\.experts\.(\d+)\.(w\d\.weight)")
def replace_match(match):
blk_id = match.group(1)
expert_id = match.group(2)
weight_type = match.group(3)
if weight_type in replacement_template:
return f"blk.{blk_id}.{replacement_template[weight_type]}.{expert_id}.weight"
else:
return match.group(0)
new_name = re.sub(pattern, replace_match, name)
return new_name
def translate_name_to_gguf(name):
name = translate_name_to_gguf_mixtral(name)
name = name.replace("lm_head.", "output.")
name = name.replace("model.embed_tokens.", "token_embd.")
name = name.replace("model.norm.", "output_norm.")
@ -716,9 +773,14 @@ def translate_name_to_gguf(name):
name = name.replace(".mlp.experts.ffn_gate_exps", ".ffn_gate_exps")
name = name.replace(".mlp.experts.ffn_up_exps", ".ffn_up_exps")
name = name.replace(".block_sparse_moe.gate.", ".ffn_gate_inp.")
name = name.replace(".block_sparse_moe.experts", "")
return name
if __name__ == '__main__':
gguf_path = '/mnt/data/model/DeepSeek-Coder-V2-GGUF-WJH'
loader = GGUFLoader(gguf_path)
loader.load_gguf_tensor('token_embd.weight')

View File

@ -39,6 +39,22 @@ def set_param(module: nn.Module, name: str, weights: torch.Tensor):
param.unsqueeze_(0)
setattr(module, name, param)
def get_device(gguf_module_key:str, device_map:dict):
if gguf_module_key in device_map:
return device_map[gguf_module_key]["generate_device"]
else:
return "cuda"
def get_all_used_cuda_device(device_map:dict):
all_device_list = set()
for key in device_map:
all_device_list.add(device_map[key]["generate_device"]) if "generate_device" in device_map[key] else None
all_device_list.add(device_map[key]["prefill_device"]) if "prefill_device" in device_map[key] else None
if "cpu" in all_device_list:
all_device_list.remove("cpu")
all_device_list = list(all_device_list)
return all_device_list
def load_cur_state_dict(module: nn.Module, gguf_loader: GGUFLoader, prefix: str = ""):
prefix = prefix.replace("orig_module.", "")
persistent_buffers = {k: v for k, v in module._buffers.items() if k not in module._non_persistent_buffers_set}
@ -47,18 +63,19 @@ def load_cur_state_dict(module: nn.Module, gguf_loader: GGUFLoader, prefix: str
for name, param in local_state.items():
key = prefix + name
translated_key = translate_name_to_gguf(key)
print("default loading weights", key, translated_key)
if translated_key in gguf_loader.tensor_file_map:
target_dtype = torch.get_default_dtype()
device = "cpu" if "embd" in translated_key else "cuda"
device = get_device(translated_key[:translated_key.rfind(".")], gguf_loader.tensor_device_map)
print(f"loading {translated_key} to {device}")
# device = "cpu" if "embd" in translated_key else "cuda"
weights = gguf_loader.load_gguf_tensor(translated_key, device = device).to(dtype = target_dtype)
set_param(module, name, weights)
del weights
else:
#print(load_config.tensor_file_map.keys())
raise Exception(f"can't fand {translated_key} in GGUF file!")
raise Exception(f"can't find {translated_key} in GGUF file!")
def load_weights(module:nn.Module, gguf_loader:GGUFLoader, prefix='', return_when_injected:bool = False, only_load_injected:bool = False):
def load_weights(module:nn.Module, gguf_loader:GGUFLoader, prefix=''):
# print(f"recursively loading weights {prefix},{return_when_injected=}, {only_load_injected=}")
if not isinstance(module, base_operator.BaseInjectedModule):
load_cur_state_dict(module, gguf_loader, prefix)
@ -66,29 +83,36 @@ def load_weights(module:nn.Module, gguf_loader:GGUFLoader, prefix='', return_whe
load_weights(child, gguf_loader, prefix+name+".")
else:
module.load()
def prefill_and_generate(model, tokenizer, inputs, max_new_tokens=10000):
def prefill_and_generate(model, tokenizer, inputs, max_new_tokens=10000, use_cuda_graph: bool = True):
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
torch._dynamo.config.suppress_errors = True
batch_size, seq_length = inputs.shape
torch_device = inputs.device
device_map = model.gguf_loader.tensor_device_map
torch_device = get_device('blk.0.self_attn', device_map)
torch_device = "cuda:0" if torch_device == "cuda" else torch_device
inputs = inputs.to(torch_device)
all_cuda_device = get_all_used_cuda_device(device_map)
tokens = []
def decode_one_tokens(cuda_graph_runner, cur_token, position_ids, cache_position, past_key_values):
logits = cuda_graph_runner(cur_token, position_ids, cache_position)
def decode_one_tokens(cuda_graph_runner, cur_token, position_ids, cache_position, past_key_values, use_cuda_graph: bool = True):
if use_cuda_graph:
logits = cuda_graph_runner(cur_token, position_ids, cache_position)
else:
# custom_stream = torch.cuda.Stream()
torch.cuda.set_device(torch_device)
inputs_embeds = model.model.embed_tokens(cur_token.to("cpu")).to(torch_device)
# with torch.cuda.stream(custom_stream):
logits=model(inputs_embeds=inputs_embeds,
position_ids=position_ids,
cache_position=cache_position,
past_key_values=past_key_values,
return_dict=False, use_cache=True)[0]
past_key_values.change_seq_length(1)
"""
inputs_embeds = model.model.embed_tokens(cur_token.to("cpu")).to("cuda")
custom_stream = torch.cuda.Stream()
with torch.cuda.stream(custom_stream):
logits=model(inputs_embeds = inputs_embeds,
position_ids = position_ids,
cache_position = cache_position,
past_key_values = past_key_values,
return_dict = False, use_cache = True) [0]
"""
torch.cuda.synchronize()
for device in all_cuda_device:
torch.cuda.synchronize(device)
#print(logits)
next_token_scores = logits_warper(inputs, logits[:, -1, :])
if generation_config.do_sample:
@ -97,11 +121,12 @@ def prefill_and_generate(model, tokenizer, inputs, max_new_tokens=10000):
else:
next_token = torch.argmax(next_token_scores, dim=-1)
return next_token
torch.cuda.set_device(torch_device)
with torch.no_grad():
stream = TextStreamer(tokenizer)
past_key_values = StaticCache(
config = model.config, max_batch_size = 1, max_cache_len = seq_length + max_new_tokens, device = torch_device, dtype = model.dtype
config = model.config, max_batch_size = 1, max_cache_len = seq_length + max_new_tokens, device = device_map, dtype = model.dtype
)
cache_position = torch.arange(seq_length, device=torch_device)
generated_ids = torch.zeros(
@ -111,21 +136,21 @@ def prefill_and_generate(model, tokenizer, inputs, max_new_tokens=10000):
past_key_values.cur_idx=cache_position
start_time = time.time()
inputs_embeds = model.model.embed_tokens(inputs.to("cpu")).to("cuda")
inputs_embeds = model.model.embed_tokens(inputs.to("cpu")).to(torch_device)
logits = model(
inputs_embeds = inputs_embeds, cache_position=cache_position, past_key_values=past_key_values, return_dict=False, use_cache=True
)[0][:,-1,:].unsqueeze(0).clone()
)[0][:,-1,:].unsqueeze(0).clone().to(torch_device)
generation_config, model_kwargs = model._prepare_generation_config(
None, max_length=max_new_tokens,
do_sample=True, top_k=5, top_p=0.85, temperature=0.1 # change this to modify generate config
)
try: # transformers==4.43
logits_warper = (
model._get_logits_warper(generation_config,device=inputs.device) if generation_config.do_sample else None
model._get_logits_warper(generation_config,device=inputs.device)
)
except:
logits_warper = (
model._get_logits_warper(generation_config) if generation_config.do_sample else None
model._get_logits_warper(generation_config)
)
next_token_scores = logits_warper(inputs, logits[:, -1, :])
if generation_config.do_sample:
@ -137,7 +162,6 @@ def prefill_and_generate(model, tokenizer, inputs, max_new_tokens=10000):
prefill_count = seq_length
prefill_time = first_token_time
print(stream.put(next_token.item()), end="", flush=True)
generated_ids[:, seq_length] = next_token
tokens.append(next_token)
@ -145,12 +169,16 @@ def prefill_and_generate(model, tokenizer, inputs, max_new_tokens=10000):
cache_position = torch.tensor([seq_length], device=torch_device)
position_ids = cache_position.unsqueeze(0)
seq_length += 1
cuda_graph_runner = CUDAGraphRunner()
cuda_graph_runner.capture(model, next_token.unsqueeze(0), position_ids, cache_position, past_key_values, return_dict=False, use_cache=True)
if use_cuda_graph:
cuda_graph_runner = CUDAGraphRunner()
cuda_graph_runner.capture(model, next_token.unsqueeze(0), position_ids, cache_position, past_key_values, torch_device, return_dict=False, use_cache=True)
else:
cuda_graph_runner = None
start_time = time.time()
for _ in range(1, max_new_tokens):
next_token = decode_one_tokens(cuda_graph_runner, next_token.unsqueeze(0), position_ids, cache_position, past_key_values)
next_token = decode_one_tokens(cuda_graph_runner, next_token.unsqueeze(0), position_ids, cache_position, past_key_values, use_cuda_graph).to(torch_device)
inputs = torch.cat((inputs, next_token.unsqueeze(0)), dim=-1)
generated_ids[:, cache_position] = next_token.int()
tokens.append(next_token.int())
@ -163,6 +191,7 @@ def prefill_and_generate(model, tokenizer, inputs, max_new_tokens=10000):
print(stream.put(next_token.item()), end="", flush=True)
cache_position += 1
position_ids = cache_position.unsqueeze(0)
total_time = time.time() - start_time
tokens_generated = len(tokens)

View File

@ -6,7 +6,7 @@ Author : chenxl
Date : 2024-07-27 16:15:27
Version : 1.0.0
LastEditors : chenxl
LastEditTime : 2024-08-08 02:45:15
LastEditTime : 2024-08-14 16:36:19
Adapted from:
https://github.com/Dao-AILab/flash-attention/blob/v2.6.3/setup.py
Copyright (c) 2023, Tri Dao.
@ -299,6 +299,15 @@ setup(
'ktransformers/ktransformers_ext/cuda/custom_gguf/dequant.cu',
'ktransformers/ktransformers_ext/cuda/binding.cpp',
'ktransformers/ktransformers_ext/cuda/gptq_marlin/gptq_marlin.cu'
])
],
extra_compile_args={
'cxx': ['-O3'],
'nvcc': [
'-O3',
'--use_fast_math',
'-Xcompiler', '-fPIC',
]
}
)
]
)

View File

@ -94,7 +94,6 @@ static const struct GemmFuncs {
#if defined(__FMA__) || (defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__)))
#if defined(__AVX2__)
#if defined(__AVX512F__)
printf("__AVX512F__\n");
#if defined(__AVX512VL__) && defined(__AVX512BW__) && defined(__AVX512DQ__) && defined(__AVX512VNNI__) && defined(__AVX512BF16__)
// AMD Zen4+ (2023-)
sgemm = llamafile_sgemm_amd_zen4;