Merge pull request #644 from wtdcode/temperature_top_p_from_request

Allow temperature and top_p from /v1/chat/completions
This commit is contained in:
wang jiahao 2025-02-27 18:13:13 +08:00 committed by GitHub
commit 5e3c6b4f97
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 25 additions and 17 deletions

View File

@ -31,13 +31,13 @@ async def chat_completion(request:Request,create:ChatCompletionCreate):
if create.stream:
async def inner():
chunk = ChatCompletionChunk(id=id,object='chat.completion.chunk',created=int(time()))
async for token in interface.inference(input_message,id):
async for token in interface.inference(input_message,id,create.temperature,create.top_p):
chunk.set_token(token)
yield chunk
return chat_stream_response(request,inner())
else:
comp = ChatCompletionObject(id=id,object='chat.completion',created=int(time()))
comp.usage = Usage(completion_tokens=1, prompt_tokens=1, total_tokens=2)
async for token in interface.inference(input_message,id):
async for token in interface.inference(input_message,id,create.temperature,create.top_p):
comp.append_token(token)
return comp

View File

@ -20,7 +20,7 @@ async def create_completion(request:Request,create:CompletionCreate):
if create.stream:
async def inner():
async for token in interface.inference(create.prompt,id):
async for token in interface.inference(create.prompt,id,create.temperature,create.top_p):
d = {'choices':[{'delta':{'content':token}}]}
yield f"data:{json.dumps(d)}\n\n"
d = {'choices':[{'delta':{'content':''},'finish_reason':''}]}
@ -28,6 +28,6 @@ async def create_completion(request:Request,create:CompletionCreate):
return stream_response(request,inner())
else:
comp = CompletionObject(id=id,object='text_completion',created=int(time()))
async for token in interface.inference(create.prompt,id):
async for token in interface.inference(create.prompt,id,create.temperature,create.top_p):
comp.append_token(token)
return comp

View File

@ -14,9 +14,9 @@ from ktransformers.models.custom_cache import StaticCache
from ktransformers.util.cuda_graph_runner import CUDAGraphRunner
from ktransformers.local_chat import custom_models, default_optimize_rules
from ktransformers.util.utils import get_device
from typing import Optional
from ktransformers.operators.flashinfer_wrapper import flashinfer_enabled, MLAWrapperSingleton
warm_uped = False
class KTransformersThreadContext(TransformersThreadContext):
@ -128,7 +128,7 @@ class KTransformersInterface(TransformersInterface):
@torch.no_grad
def prefill(self, input_ids: torch.Tensor, is_new: bool):
def prefill(self, input_ids: torch.Tensor, is_new: bool, temperature: Optional[float], top_p: Optional[float]):
input_ids_length = input_ids.shape[-1]
logger.debug(f"input_ids: {input_ids.shape}")
@ -203,7 +203,7 @@ class KTransformersInterface(TransformersInterface):
if flashinfer_enabled:
MLAWrapperSingleton.reset_buffer()
self.prepare_logits_wrapper(input_ids, device)
self.prepare_logits_wrapper(input_ids, device, temperature, top_p)
next_token = self.logits_to_token(logits[0, -1, :])
yield self.append_new_tokens(next_token)
@ -212,7 +212,7 @@ class KTransformersInterface(TransformersInterface):
device = self.device_map.get("blk.0.self_attn", {}).get("generate_device", "cuda:0")
return torch.tensor([self.seq_length - 1], device=device)
async def inference(self, local_messages, thread_id: str):
async def inference(self, local_messages, thread_id: str, temperature: Optional[float], top_p: Optional[float]):
async with self._infer_lock:
async for v in super().inference(local_messages, thread_id):
async for v in super().inference(local_messages, thread_id, temperature, top_p):
yield v

View File

@ -202,13 +202,17 @@ class TransformersInterface(BackendInterfaceBase):
self.seq_length += 1
return self.streamer.put(new_tokens)
def prepare_logits_wrapper(self, inputs, device):
def prepare_logits_wrapper(self, inputs, device, temperature: Optional[float] = None, top_p: Optional[float] = None):
if temperature is None:
temperature = self.args.temperature
if top_p is None:
top_p = self.args.top_p
generation_config, model_kwargs = self.model._prepare_generation_config(
None, max_length=self.args.max_new_tokens,
do_sample=True,
top_k=self.args.top_k,
top_p=self.args.top_p,
temperature=self.args.temperature,
top_p=top_p,
temperature=temperature,
repetition_penalty=self.args.repetition_penalty # change this to modify generate config
)
self.inputs = inputs
@ -255,7 +259,7 @@ class TransformersInterface(BackendInterfaceBase):
return self.logits_to_token(logits)
@torch.no_grad
def prefill(self, input_ids: torch.Tensor, is_new: bool):
def prefill(self, input_ids: torch.Tensor, is_new: bool, temperature: Optional[float] = None, top_p: Optional[float] = None):
input_ids_length = input_ids.shape[-1]
logger.debug(f"input_ids: {input_ids.shape}")
@ -323,7 +327,7 @@ class TransformersInterface(BackendInterfaceBase):
else:
logits = self.model(inputs_embeds=inputs_embeds, return_dict=False)[0]
self.prepare_logits_wrapper(input_ids, device)
self.prepare_logits_wrapper(input_ids, device, temperature, top_p)
next_token = self.logits_to_token(logits[0, -1, :])
yield self.append_new_tokens(next_token)
@ -359,7 +363,7 @@ class TransformersInterface(BackendInterfaceBase):
self.last_request_id = thread_id
return True
async def inference(self, local_messages, thread_id: str):
async def inference(self, local_messages, thread_id: str, temperature: Optional[float] = None, top_p: Optional[float] = None):
self.streamer.reset()
self.profiler.create_and_start_timer("tokenize")
if isinstance(local_messages, List):
@ -386,7 +390,7 @@ class TransformersInterface(BackendInterfaceBase):
print(think, end="",flush=True)
yield think
for t in self.prefill(input_ids, self.check_is_new(thread_id)):
for t in self.prefill(input_ids, self.check_is_new(thread_id), temperature, top_p):
# output think token after prefill done
if t is not None:
print(t, end="",flush=True)

View File

@ -25,7 +25,9 @@ class ChatCompletionCreate(BaseModel):
messages: List[Message]
model : str
stream : bool = False
temperature: Optional[float] = None
top_p: Optional[float] = None
def get_tokenizer_messages(self):
return [m.to_tokenizer_message() for m in self.messages]

View File

@ -9,6 +9,8 @@ class CompletionCreate(BaseModel):
model: str
prompt: str | List[str]
stream: bool = False
temperature: Optional[float] = None
top_p: Optional[float] = None
def get_tokenizer_messages(self):
if isinstance(self.prompt,List):