diff --git a/doc/en/DeepseekR1_V3_tutorial.md b/doc/en/DeepseekR1_V3_tutorial.md
index 1bc1adf..4a4a27f 100644
--- a/doc/en/DeepseekR1_V3_tutorial.md
+++ b/doc/en/DeepseekR1_V3_tutorial.md
@@ -27,7 +27,7 @@ gpu: 4090D 24G VRAM
### V0.3-Preview
#### settings
- model: DeepseekV3-BF16 (online quant into int8 for CPU and int4 for GPU)
-- CPU: cpu_model_name:Intel(R) Xeon(R) Gold 6454S, 32 cores per socket, 2 socket, 2numa nodes
+- CPU: cpu_model_name:Intel(R) Xeon(R) Gold 6454S, 32 cores per socket, 2 socket, 2 numa nodes
- GPU: (1~4)x 4090D 24GVRAM (requires more VRAM for longer prompt)
#### memory consumptions:
@@ -39,7 +39,8 @@ gpu: 4090D 24G VRAM
| KTrans (8 experts) Prefill token/s | 185.96 | 255.26 | 252.58 | 195.62 |
| KTrans (6 experts) Prefill token/s | 203.70 | 286.55 | 271.08 | 207.20 |
-**The prefill of KTrans V0.3 is up to x3.45 times faster than KTrans V0.2. The decoding speed is the same as KTrans V0.2 (6 experts version) so it is omitted.**
+**The prefill of KTrans V0.3 is up to x3.45 times faster than KTrans V0.2, and is up to x63.53 times faster than Llama.**
+**The decoding speed is the same as KTrans V0.2 (6 experts version) so it is omitted.**
The main acceleration comes from
- Intel AMX instruction set and our specially designed cache friendly memory layout