📝 update benchmark.md

This commit is contained in:
liam 2025-02-25 23:56:19 +08:00
parent 9c71bcb0bb
commit 05339ad0ef
2 changed files with 26 additions and 11 deletions

View File

@ -21,3 +21,5 @@
- [FAQ](en/FAQ.md) - [FAQ](en/FAQ.md)
# V3 Reproduction # V3 Reproduction
- [Success List](en/V3-success.md) - [Success List](en/V3-success.md)
# Benchmark
- [Benchmark](en/benchmark.md)

View File

@ -16,7 +16,7 @@ Given that we have only tested 1,000 cases, which provides only a preliminary ju
- The bf16 model of DeepSeek-V3 is available [here](https://huggingface.co/opensourcerelease/DeepSeek-V3-bf16/tree/main) (you may convert it to gguf by llama.cpp). The q4km model can be found [here](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q4_K_M). - The bf16 model of DeepSeek-V3 is available [here](https://huggingface.co/opensourcerelease/DeepSeek-V3-bf16/tree/main) (you may convert it to gguf by llama.cpp). The q4km model can be found [here](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q4_K_M).
- The optimization YAML file is located [here](https://github.com/kvcache-ai/ktransformers/tree/main/ktransformers/optimize/optimize_rules). For the Matrix MUL Kernel, you can change `KLinearMarlin` to `KLinearTorch`. - The optimization YAML file is located [here](https://github.com/kvcache-ai/ktransformers/tree/main/ktransformers/optimize/optimize_rules). For the GEMM Kernel, you can change `KLinearMarlin` to `KLinearTorch`.
- To switch the MLA Kernel from Triton to Torch, you can check and modify [this file](https://github.com/kvcache-ai/ktransformers/blob/main/ktransformers/operators/attention.py), specifically by using the `forward_windows` method. - To switch the MLA Kernel from Triton to Torch, you can check and modify [this file](https://github.com/kvcache-ai/ktransformers/blob/main/ktransformers/operators/attention.py), specifically by using the `forward_windows` method.
@ -29,15 +29,28 @@ Given that we have only tested 1,000 cases, which provides only a preliminary ju
| | | | | | | | | | | | | | | | | |
| ------------------------ | ----------------- | ---------- | ----------------- | ------- | ---------- | ------------------------------------------------------ | ------------ | | ------------------------ | ----------------- | ---------- | ----------------- | ------- | ---------- | ------------------------------------------------------ | ------------ |
| DataSet | CPU Weight Format | CPU Kernel | GPU Weight Format | GEMM | MLA Kernel | [Siliconflow](https://cloud.siliconflow.cn/models)<br> | Ktrans Point | | DataSet | CPU Weight Format | CPU Kernel | GPU Weight Format | GEMM Kernel | MLA Kernel | [Siliconflow](https://cloud.siliconflow.cn/models)<br> | Ktrans Point |
| MMLU<br><br>(shuffle 1k) | bf16 | cpuinfer | bf16 | torch | torch | 81.6 | 81.9 | | MMLU<br><br>(shuffle 1k) | | | | | | | |
| | int8 | cpuinfer | bf16 | torch | torch | 81.6 | 83.1 | | 1 | bf16 | cpuinfer | bf16 | torch | torch | 81.6 | 81.9 |
| | q4km | cpuinfer | bf16 | torch | torch | 81.6 | 82.8 | | 2 | q8_0 | cpuinfer | bf16 | torch | torch | 81.6 | 83.1 |
| | q4km | cpuinfer | bf16 | torch | triton | 81.6 | 81.4 | | 3 | q4km | cpuinfer | bf16 | torch | triton | 81.6 | 81.4 |
| | q4km | cpuinfer | q4km->marlin 8 | marlin | triton | 81.6 | 81.1 | | 4 | q4km | cpuinfer | q4km->marlin 8 | marlin | triton | 81.6 | 81.1 |
| | q4km | cpuinfer | q4km->marlin 4 | marlin | triton | 81.6 | 81 | | 5 | q4km | cpuinfer | q4km->marlin 4 | marlin | triton | 81.6 | 81 |
| | q4km | cpuinfer | fp8 | marlin | triton | 81.6 | 81.5 | | 6 | q4km | cpuinfer | fp8 | fp8gemm | triton | 81.6 | 81.5 |
| MMLU-pro | q4km | cpuinfer | fp8 | fp8gemm | triton | 57.7 | 57.6 | | MMLU-pro | | | | | | | |
| MMLU-pro | q4km | cpuinfer | q4km->marlin 4 | marlin | triton | 57.7 | 57.5 | | 1 | q4km | cpuinfer | fp8 | fp8gemm | triton | 57.7 | 57.6 |
| 2 | q4km | cpuinfer | q4km->marlin 4 | marlin | triton | 57.7 | 57.5 |
| HumanEval | tbd | tbd | tbd | tbd | tbd | tbd | tbd | | HumanEval | tbd | tbd | tbd | tbd | tbd | tbd | tbd |
| GSM8K | tbd | tbd | tbd | tbd | tbd | tbd | tbd | | GSM8K | tbd | tbd | tbd | tbd | tbd | tbd | tbd |
**the yaml files used for each case are listed below**:
- MMLU test
1. [v3-chat_yaml](https://github.com/kvcache-ai/ktransformers/blob/main/ktransformers/optimize/optimize_rules/DeepSeek-V3-Chat.yaml) change all the `KLinearMarlin` to `KLinearTorch` (just find all the usage in this file). The source weight comes from [there](https://huggingface.co/opensourcerelease/DeepSeek-V3-bf16) (you need to use llama.cpp to convert it to gguf)
2. [v3-chat_yaml](https://github.com/kvcache-ai/ktransformers/blob/main/ktransformers/optimize/optimize_rules/DeepSeek-V3-Chat.yaml). You need to modify the code to seperately load cpu's expert weight. We leave this as comment in these places: [1](https://github.com/kvcache-ai/ktransformers/blob/main/ktransformers/operators/experts.py#L122), [2](https://github.com/kvcache-ai/ktransformers/blob/main/ktransformers/operators/experts.py#L136), [3](https://github.com/kvcache-ai/ktransformers/blob/main/ktransformers/operators/experts.py#L137) (note in 3, change the path to your local weight file path). The weight file for q8_0 is [here](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q8_0)
3. [v3-chat_yaml](https://github.com/kvcache-ai/ktransformers/blob/main/ktransformers/optimize/optimize_rules/DeepSeek-V3-Chat.yaml). You need to modify the code to seperately load cpu's expert weight. We leave this as comment in these places: [1](https://github.com/kvcache-ai/ktransformers/blob/main/ktransformers/operators/experts.py#L122), [2](https://github.com/kvcache-ai/ktransformers/blob/main/ktransformers/operators/experts.py#L136), [3](https://github.com/kvcache-ai/ktransformers/blob/main/ktransformers/operators/experts.py#L137) (note in 3, change the path to your local weight file path). The weight file for q4km is [here](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q4_K_M)
4. [v3-chat_yaml](https://github.com/kvcache-ai/ktransformers/blob/main/ktransformers/optimize/optimize_rules/DeepSeek-V3-Chat.yaml). You don't need to change the source code as they both use q4km. But note the yaml file [here](https://github.com/kvcache-ai/ktransformers/blob/main/ktransformers/optimize/optimize_rules/DeepSeek-V3-Chat.yaml#L29) and [here](https://github.com/kvcache-ai/ktransformers/blob/main/ktransformers/optimize/optimize_rules/DeepSeek-V3-Chat.yaml#L18), below these lines you need to add `num_bits: 8` (in other words: add this kwargs to all that use `KLinearMarlin`). The weight file for q4km is [here](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q4_K_M)
5. [v3-chat_yaml](https://github.com/kvcache-ai/ktransformers/blob/main/ktransformers/optimize/optimize_rules/DeepSeek-V3-Chat.yaml). No need to change yaml, just use the default. The weight file for q4km is [here](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q4_K_M)
6. You should check the [doc](./fp8_kernel.md) to learn how to test this case. This is a mixture tensor case.
- MMLU-pro test
1. You should check the [doc](./fp8_kernel.md) to learn how to test this case. This is a mixture tensor case.
2. [v3-chat_yaml](https://github.com/kvcache-ai/ktransformers/blob/main/ktransformers/optimize/optimize_rules/DeepSeek-V3-Chat.yaml). No need to change yaml, just use the default. The weight file for q4km is [here](https://huggingface.co/unsloth/DeepSeek-V3-GGUF/tree/main/DeepSeek-V3-Q4_K_M)