2025-04-09 11:54:32 +08:00

466 lines
15 KiB
Python

import os
import logging
import argparse
from decouple import config
from langchain_deepseek import ChatDeepSeek
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores.chroma import Chroma
from fastapi import FastAPI, APIRouter, HTTPException, Request
from fastapi.responses import JSONResponse
from pydantic import BaseModel, Field
from typing import List, Dict, Any
from typing_extensions import TypedDict
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.prompts import PromptTemplate, HumanMessagePromptTemplate
from langchain.schema import Document
from pprint import pprint
from langgraph.graph import END, StateGraph, START
from app.backend.models.adaptive_rag.data_models import (
RouteQuery,
GradeDocuments,
GradeHallucinations,
GradeAnswer
)
from app.backend.models.adaptive_rag.prompts_library import (
system_router,
system_retriever_grader,
system_hallucination_grader,
system_answer_grader,
system_question_rewriter,
qa_prompt_template
)
logging.basicConfig(level=logging.INFO, format="%(asctime)-15s %(message)s")
logger = logging.getLogger()
os.environ["DEEPSEEK_API_KEY"] = config("DEEPSEEK_API_KEY", cast=str)
os.environ["TAVILY_API_KEY"] = config("TAVILY_API_KEY", cast=str)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
app = FastAPI()
router = APIRouter()
class QueryRequest(BaseModel):
query: str = Field(..., description="The question to ask the model")
input_chromadb_artifact: str = Field(..., description="Fully-qualified name for the chromadb artifact")
embedding_model: str = Field("paraphrase-multilingual-mpnet-base-v2", description="Sentence Transformer model name")
chat_model_provider: str = Field("gemini", description="Chat model provider")
class QueryResponse(BaseModel):
response: str = Field(..., description="The model's response")
@router.post("/query", response_model=QueryResponse, response_model_exclude_none=True)
async def query_endpoint(request: Request, query_request: QueryRequest):
try:
args = argparse.Namespace(
query=query_request.query,
input_chromadb_artifact=query_request.input_chromadb_artifact,
embedding_model=query_request.embedding_model,
chat_model_provider=query_request.chat_model_provider
)
result = go(args)
return {"response": result["response"]}
except Exception as e:
logger.exception(f"Error processing query: {e}")
raise HTTPException(status_code=500, detail=f"Error processing query: {e}")
def go(args):
logger.info("Downloading chromadb artifact")
artifact_chromadb_local_path = args.input_chromadb_artifact #modified
# shutil.unpack_archive(artifact_chromadb_local_path, "chroma_db") #removed
# Initialize embedding model (do this ONCE)
embedding_model = HuggingFaceEmbeddings(model_name=args.embedding_model)
llm = ChatDeepSeek(
model="deepseek-chat",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
)
# Load data from ChromaDB
# db_folder = "chroma_db" #removed
# db_path = os.path.join(os.getcwd(), db_folder) #removed
# collection_name = "rag-chroma" #removed
vectorstore = Chroma(persist_directory=artifact_chromadb_local_path, collection_name="rag-chroma", embedding_function=embedding_model) #modified
retriever = vectorstore.as_retriever()
##########################################
# Routing to vectorstore or web search
structured_llm_router = llm.with_structured_output(RouteQuery)
# Prompt
route_prompt = ChatPromptTemplate.from_messages(
[
("system", system_router),
("human", "{question}"),
]
)
question_router = route_prompt | structured_llm_router
##########################################
### Retrieval Grader
structured_llm_grader = llm.with_structured_output(GradeDocuments)
# Prompt
grade_prompt = ChatPromptTemplate.from_messages(
[
("system", system_retriever_grader),
("human", "Retrieved document: \n\n {document} \n\n User question: {question}"),
]
)
retrieval_grader = grade_prompt | structured_llm_grader
##########################################
### Generate
from langchain_core.output_parsers import StrOutputParser
# Create a PromptTemplate with the given prompt
new_prompt_template = PromptTemplate(
input_variables=["context", "question"],
template=qa_prompt_template,
)
# Create a new HumanMessagePromptTemplate with the new PromptTemplate
new_human_message_prompt_template = HumanMessagePromptTemplate(
prompt=new_prompt_template
)
prompt_qa = ChatPromptTemplate.from_messages([new_human_message_prompt_template])
# Chain
rag_chain = prompt_qa | llm | StrOutputParser()
##########################################
### Hallucination Grader
structured_llm_grader = llm.with_structured_output(GradeHallucinations)
# Prompt
hallucination_prompt = ChatPromptTemplate.from_messages(
[
("system", system_hallucination_grader),
("human", "Set of facts: \n\n {documents} \n\n LLM generation: {generation}"),
]
)
hallucination_grader = hallucination_prompt | structured_llm_grader
##########################################
### Answer Grader
structured_llm_grader = llm.with_structured_output(GradeAnswer)
# Prompt
answer_prompt = ChatPromptTemplate.from_messages(
[
("system", system_answer_grader),
("human", "User question: \n\n {question} \n\n LLM generation: {generation}"),
]
)
answer_grader = answer_prompt | structured_llm_grader
##########################################
### Question Re-writer
# Prompt
re_write_prompt = ChatPromptTemplate.from_messages(
[
("system", system_question_rewriter),
(
"human",
"Here is the initial question: \n\n {question} \n Formulate an improved question.",
),
]
)
question_rewriter = re_write_prompt | llm | StrOutputParser()
### Search
web_search_tool = TavilySearchResults(k=3)
class GraphState(TypedDict):
"""
Represents the state of our graph.
Attributes:
question: question
generation: LLM generation
documents: list of documents
"""
question: str
generation: str
documents: List[str]
def retrieve(state):
"""
Retrieve documents
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, documents, that contains retrieved documents
"""
print("---RETRIEVE---")
question = state["question"]
# Retrieval
documents = retriever.invoke(question)
print(documents)
return {"documents": documents, "question": question}
def generate(state):
"""
Generate answer
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, generation, that contains LLM generation
"""
print("---GENERATE---")
question = state["question"]
documents = state["documents"]
# RAG generation
generation = rag_chain.invoke({"context": documents, "question": question})
return {"documents": documents, "question": question, "generation": generation}
def grade_documents(state):
"""
Determines whether the retrieved documents are relevant to the question.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates documents key with only filtered relevant documents
"""
print("---CHECK DOCUMENT RELEVANCE TO QUESTION---")
question = state["question"]
documents = state["documents"]
# Score each doc
filtered_docs = []
for d in documents:
score = retrieval_grader.invoke(
{"question": question, "document": d.page_content}
)
grade = score.binary_score
if grade == "yes":
print("---GRADE: DOCUMENT RELEVANT---")
filtered_docs.append(d)
else:
print("---GRADE: DOCUMENT NOT RELEVANT---")
continue
return {"documents": filtered_docs, "question": question}
def transform_query(state):
"""
Transform the query to produce a better question.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates question key with a re-phrased question
"""
print("---TRANSFORM QUERY---")
question = state["question"]
documents = state["documents"]
# Re-write question
better_question = question_rewriter.invoke({"question": question})
return {"documents": documents, "question": better_question}
def web_search(state):
"""
Web search based on the re-phrased question.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates documents key with appended web results
"""
print("---WEB SEARCH---")
question = state["question"]
# Web search
docs = web_search_tool.invoke({"query": question})
web_results = "\n".join([d["content"] for d in docs])
web_results = Document(page_content=web_results)
return {"documents": web_results, "question": question}
### Edges ###
def route_question(state):
"""
Route question to web search or RAG.
Args:
state (dict): The current graph state
Returns:
str: Next node to call
"""
print("---ROUTE QUESTION---")
question = state["question"]
source = question_router.invoke({"question": question})
if source.datasource == "web_search":
print("---ROUTE QUESTION TO WEB SEARCH---")
return "web_search"
elif source.datasource == "vectorstore":
print("---ROUTE QUESTION TO RAG---")
return "vectorstore"
def decide_to_generate(state):
"""
Determines whether to generate an answer, or re-generate a question.
Args:
state (dict): The current graph state
Returns:
str: Binary decision for next node to call
"""
print("---ASSESS GRADED DOCUMENTS---")
state["question"]
filtered_documents = state["documents"]
if not filtered_documents:
# All documents have been filtered check_relevance
# We will re-generate a new query
print(
"---DECISION: ALL DOCUMENTS ARE NOT RELEVANT TO QUESTION, TRANSFORM QUERY---"
)
return "transform_query"
else:
# We have relevant documents, so generate answer
print("---DECISION: GENERATE---")
return "generate"
def grade_generation_v_documents_and_question(state):
"""
Determines whether the generation is grounded in the document and answers question.
Args:
state (dict): The current graph state
Returns:
str: Decision for next node to call
"""
print("---CHECK HALLUCINATIONS---")
question = state["question"]
documents = state["documents"]
generation = state["generation"]
score = hallucination_grader.invoke(
{"documents": documents, "generation": generation}
)
grade = score.binary_score
# Check hallucination
if grade == "yes":
print("---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---")
# Check question-answering
print("---GRADE GENERATION vs QUESTION---")
score = answer_grader.invoke({"question": question, "generation": generation})
grade = score.binary_score
if grade == "yes":
print("---DECISION: GENERATION ADDRESSES QUESTION---")
return "useful"
else:
print("---DECISION: GENERATION DOES NOT ADDRESS QUESTION---")
return "not useful"
else:
pprint("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, RE-TRY---")
return "not supported"
workflow = StateGraph(GraphState)
# Define the nodes
workflow.add_node("web_search", web_search) # web search
workflow.add_node("retrieve", retrieve) # retrieve
workflow.add_node("grade_documents", grade_documents) # grade documents
workflow.add_node("generate", generate) # generatae
workflow.add_node("transform_query", transform_query) # transform_query
# Build graph
workflow.add_conditional_edges(
START,
route_question,
{
"web_search": "web_search",
"vectorstore": "retrieve",
},
)
workflow.add_edge("web_search", "generate")
workflow.add_edge("retrieve", "grade_documents")
workflow.add_conditional_edges(
"grade_documents",
decide_to_generate,
{
"transform_query": "transform_query",
"generate": "generate",
},
)
workflow.add_edge("transform_query", "retrieve")
workflow.add_conditional_edges(
"generate",
grade_generation_v_documents_and_question,
{
"not supported": "generate",
"useful": END,
"not useful": "transform_query",
},
)
# Compile
app = workflow.compile()
# Run
inputs = {
"question": args.query
}
for output in app.stream(inputs):
for key, value in output.items():
# Node
pprint(f"Node '{key}':")
# Optional: print full state at each node
# pprint.pprint(value["keys"], indent=2, width=80, depth=None)
pprint("\n---\n")
# Final generation
print(value["generation"])
return {"response": value["generation"]}
app.include_router(router, prefix="/query", tags=["query"])