2025-03-07 12:35:29 +08:00

157 lines
5.0 KiB
Python

import os
import logging
import argparse
import mlflow
import chromadb
from decouple import config
from langchain.prompts import PromptTemplate
from sentence_transformers import SentenceTransformer
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_deepseek import ChatDeepSeek
from langchain_community.llms.moonshot import Moonshot
import sys
logging.basicConfig(level=logging.INFO, format="%(asctime)-15s %(message)s")
logger = logging.getLogger()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
GEMINI_API_KEY = config("GOOGLE_API_KEY", cast=str)
DEEKSEEK_API_KEY = config("DEEKSEEK_API_KEY", cast=str)
MOONSHOT_API_KEY = config("MOONSHOT_API_KEY", cast=str)
def stream_output(text):
for char in text:
print(char, end="")
sys.stdout.flush()
def go(args):
# start a new MLflow run
with mlflow.start_run(experiment_id=mlflow.get_experiment_by_name("development").experiment_id, run_name="etl_chromadb_pdf"):
existing_params = mlflow.get_run(mlflow.active_run().info.run_id).data.params
if 'query' not in existing_params:
mlflow.log_param('query', args.query)
# Log parameters to MLflow
mlflow.log_params({
"input_chromadb_local": args.input_chromadb_local,
"embedding_model": args.embedding_model,
"chat_model_provider": args.chat_model_provider
})
# Load data from ChromaDB
db_path = args.input_chromadb_local
chroma_client = chromadb.PersistentClient(path=db_path)
collection_name = "rag_experiment"
collection = chroma_client.get_collection(name=collection_name)
# Formulate a question
question = args.query
if args.chat_model_provider == "deepseek":
# Initialize DeepSeek model
llm = ChatDeepSeek(
model="deepseek-chat",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
api_key=DEEKSEEK_API_KEY
)
elif args.chat_model_provider == "gemini":
# Initialize Gemini model
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-flash",
google_api_key=GEMINI_API_KEY,
temperature=0,
max_retries=3
)
elif args.chat_model_provider == "moonshot":
# Initialize Moonshot model
llm = Moonshot(
model="moonshot-v1-128k",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
api_key=MOONSHOT_API_KEY
)
# Chain of Thought Prompt
cot_template = """Let's think step by step.
Given the following document in text: {documents_text}
Question: {question}
Reply with language that is similar to the language used with asked question.
"""
cot_prompt = PromptTemplate(template=cot_template, input_variables=["documents_text", "question"])
cot_chain = cot_prompt | llm
# Initialize embedding model (do this ONCE)
model = SentenceTransformer(args.embedding_model)
# Query (prompt)
query_embedding = model.encode(question) # Embed the query using the SAME model
# Search ChromaDB
documents_text = collection.query(query_embeddings=[query_embedding], n_results=5)
# Generate chain of thought
cot_output = cot_chain.invoke({"documents_text": documents_text, "question": question})
print("Chain of Thought: ", end="")
stream_output(cot_output.content)
print()
# Answer Prompt
answer_template = """Given the chain of thought: {cot}
Provide a concise answer to the question: {question}
Provide the answer with language that is similar to the question asked.
"""
answer_prompt = PromptTemplate(template=answer_template, input_variables=["cot", "question"])
answer_chain = answer_prompt | llm
# Generate answer
answer_output = answer_chain.invoke({"cot": cot_output, "question": question})
print("Answer: ", end="")
stream_output(answer_output.content)
print()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Chain of Thought RAG")
parser.add_argument(
"--query",
type=str,
help="Question to ask the model",
required=True
)
parser.add_argument(
"--input_chromadb_local",
type=str,
help="Path to input chromadb local directory",
required=True
)
parser.add_argument(
"--embedding_model",
type=str,
default="paraphrase-multilingual-mpnet-base-v2",
help="Sentence Transformer model name"
)
parser.add_argument(
"--chat_model_provider",
type=str,
default="gemini",
help="Chat model provider"
)
args = parser.parse_args()
go(args)