# main.py import os import wandb from config import GOOGLE_API_KEY, WANDB_API_KEY, LANGSMITH_API_KEY, LANGCHAIN_PROJECT from langchain_google_genai import ChatGoogleGenerativeAI from langchain.callbacks import LangChainTracer from langchain.chains import LLMChain from langchain.prompts import PromptTemplate # Set LangSmith environment variables os.environ["LANGCHAIN_TRACING"] = "true" os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" os.environ["LANGCHAIN_PROJECT"] = LANGCHAIN_PROJECT os.environ["LANGCHAIN_API_KEY"] = LANGSMITH_API_KEY # Initialize Weights & Biases wandb.login(key=WANDB_API_KEY) run = wandb.init(project=LANGCHAIN_PROJECT, entity="aimingmed") # Initialize Gemini API tracer = LangChainTracer() llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-001", google_api_key=GOOGLE_API_KEY, callbacks=[tracer]) # Example usage of Gemini API prompt_template = PromptTemplate(template="Write a short poem about the sun.", input_variables=[]) chain = LLMChain(llm=llm, prompt=prompt_template) response = chain.run({}) print(response) wandb.finish()