name: rag_adaptive_evaluation python_env: python_env.yml entry_points: main: parameters: query: description: Query to run type: string evaluation_dataset_csv_path: description: query evaluation dataset csv path type: string evaluation_dataset_column_question: description: query evaluation dataset column question type: string evaluation_dataset_column_answer: description: query evaluation dataset column groundtruth type: string input_chromadb_artifact: description: Fully-qualified name for the input artifact type: string embedding_model: description: Fully-qualified name for the embedding model type: string chat_model_provider: description: Fully-qualified name for the chat model provider type: string ls_chat_model_evaluator: description: list of chat model providers for evaluation type: string command: >- python run.py --query {query} \ --evaluation_dataset_csv_path {evaluation_dataset_csv_path} \ --evaluation_dataset_column_question {evaluation_dataset_column_question} \ --evaluation_dataset_column_answer {evaluation_dataset_column_answer} \ --input_chromadb_artifact {input_chromadb_artifact} \ --embedding_model {embedding_model} \ --chat_model_provider {chat_model_provider} \ --ls_chat_model_evaluator {ls_chat_model_evaluator}