Merge pull request #20 from aimingmed/develop

merge working evaluation with smith
This commit is contained in:
Hong Kai LEE 2025-04-01 11:15:40 +08:00 committed by GitHub
commit e238d6e158
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
19 changed files with 1369 additions and 348 deletions

5
.gitignore vendored
View File

@ -206,4 +206,7 @@ data/*
**/llm-template2/*
**/llmops/outputs/*
**/*.zip
**/llm-examples/*
**/llm-examples/*
**/*.ipynb_checkpoints
**/*.ipynb
**/transformer_model/*

View File

@ -9,8 +9,16 @@ etl:
path_document_folder: "../../../../data"
run_id_documents: None
embedding_model: paraphrase-multilingual-mpnet-base-v2
prompt_engineering:
rag:
run_id_chromadb: None
chat_model_provider: gemini
query: "怎么治疗有kras的肺癌?"
chat_model_provider: deepseek
testing:
query: "如何治疗乳腺癌?"
evaluation:
evaluation_dataset_csv_path: "../../../../data/qa_dataset_20240321a.csv"
evaluation_dataset_column_question: question
evaluation_dataset_column_answer: answer
ls_chat_model_provider:
- gemini
- deepseek
- moonshot

View File

@ -9,6 +9,7 @@ _steps = [
"etl_chromadb_pdf",
"etl_chromadb_scanned_pdf", # the performance for scanned pdf may not be good
"rag_cot_evaluation",
"rag_adaptive_evaluation",
"test_rag_cot"
]
@ -103,7 +104,7 @@ def go(config: DictConfig):
)
if "rag_cot_evaluation" in active_steps:
if config["prompt_engineering"]["run_id_chromadb"] == "None":
if config["rag"]["run_id_chromadb"] == "None":
# Look for run_id that has artifact logged as documents
run_id = None
client = mlflow.tracking.MlflowClient()
@ -118,19 +119,52 @@ def go(config: DictConfig):
if run_id is None:
raise ValueError("No run_id found with artifact logged as documents")
else:
run_id = config["prompt_engineering"]["run_id_chromadb"]
run_id = config["rag"]["run_id_chromadb"]
_ = mlflow.run(
os.path.join(hydra.utils.get_original_cwd(), "src", "rag_cot_evaluation"),
"main",
parameters={
"query": config["prompt_engineering"]["query"],
"query": config["testing"]["query"],
"input_chromadb_artifact": f'runs:/{run_id}/chromadb/chroma_db.zip',
"embedding_model": config["etl"]["embedding_model"],
"chat_model_provider": config["prompt_engineering"]["chat_model_provider"]
"chat_model_provider": config["rag"]["chat_model_provider"]
},
)
if "rag_adaptive_evaluation" in active_steps:
if config["rag"]["run_id_chromadb"] == "None":
# Look for run_id that has artifact logged as documents
run_id = None
client = mlflow.tracking.MlflowClient()
for run in client.search_runs(experiment_ids=[client.get_experiment_by_name(config["main"]["experiment_name"]).experiment_id]):
for artifact in client.list_artifacts(run.info.run_id):
if artifact.path == "chromadb":
run_id = run.info.run_id
break
if run_id:
break
if run_id is None:
raise ValueError("No run_id found with artifact logged as documents")
else:
run_id = config["rag"]["run_id_chromadb"]
_ = mlflow.run(
os.path.join(hydra.utils.get_original_cwd(), "src", "rag_adaptive_evaluation"),
"main",
parameters={
"query": config["testing"]["query"],
"evaluation_dataset_csv_path": config["evaluation"]["evaluation_dataset_csv_path"],
"evaluation_dataset_column_question": config["evaluation"]["evaluation_dataset_column_question"],
"evaluation_dataset_column_answer": config["evaluation"]["evaluation_dataset_column_answer"],
"input_chromadb_artifact": f'runs:/{run_id}/chromadb/chroma_db.zip',
"embedding_model": config["etl"]["embedding_model"],
"chat_model_provider": config["rag"]["chat_model_provider"],
"ls_chat_model_evaluator": ','.join(config["evaluation"]["ls_chat_model_provider"]) if config["evaluation"]["ls_chat_model_provider"] is not None else 'None',
},
)
if "test_rag_cot" in active_steps:
@ -138,10 +172,10 @@ def go(config: DictConfig):
os.path.join(hydra.utils.get_original_cwd(), "components", "test_rag_cot"),
"main",
parameters={
"query": config["prompt_engineering"]["query"],
"query": config["testing"]["query"],
"input_chromadb_local": os.path.join(hydra.utils.get_original_cwd(), "src", "rag_cot_evaluation", "chroma_db"),
"embedding_model": config["etl"]["embedding_model"],
"chat_model_provider": config["prompt_engineering"]["chat_model_provider"]
"chat_model_provider": config["rag"]["chat_model_provider"]
},
)

View File

@ -10,6 +10,11 @@ build_dependencies:
- pdfminer.six
- langchain
- sentence_transformers
- langchain-text-splitters
- langchain_huggingface
- langchain-community
- tiktoken
# Dependencies required to run the project.
dependencies:
- mlflow==2.8.1

View File

@ -8,16 +8,16 @@ import os
import mlflow
import shutil
import chromadb
import io
from pdfminer.converter import TextConverter
from pdfminer.pdfinterp import PDFPageInterpreter
from pdfminer.pdfinterp import PDFResourceManager
from pdfminer.pdfpage import PDFPage
from langchain.schema import Document
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores.chroma import Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter
from sentence_transformers import SentenceTransformer
logging.basicConfig(level=logging.INFO, format="%(asctime)-15s %(message)s")
logger = logging.getLogger()
@ -80,7 +80,7 @@ def go(args):
# Initialize embedding model (do this ONCE)
model_embedding = SentenceTransformer(args.embedding_model) # Or a multilingual model
model_embedding = HuggingFaceEmbeddings(model_name=args.embedding_model) # Or a multilingual model
# Create database, delete the database directory if it exists
@ -90,9 +90,6 @@ def go(args):
shutil.rmtree(db_path)
os.makedirs(db_path)
chroma_client = chromadb.PersistentClient(path=db_path)
collection_name = "rag_experiment"
db = chroma_client.create_collection(name=collection_name)
logger.info("Downloading artifact")
artifact_local_path = mlflow.artifacts.download_artifacts(artifact_uri=args.input_artifact)
@ -107,22 +104,28 @@ def go(args):
# show the unzipped folder
documents_folder = os.path.splitext(os.path.basename(artifact_local_path))[0]
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=15000, chunk_overlap=7500
)
ls_docs = []
for root, _dir, files in os.walk(f"./{documents_folder}"):
for file in files:
if file.endswith(".pdf"):
read_text = extract_chinese_text_from_pdf(os.path.join(root, file))
document = Document(page_content=read_text)
all_splits = text_splitter.split_documents([document])
for i, split in enumerate(all_splits):
db.add(documents=[split.page_content],
metadatas=[{"filename": file}],
ids=[f'{file[:-4]}-{str(i)}'],
embeddings=[model_embedding.encode(split.page_content)]
)
document = Document(metadata={"file": f"{documents_folder}/{file}"}, page_content=read_text)
ls_docs.append(document)
doc_splits = text_splitter.split_documents(ls_docs)
# Add to vectorDB
_vectorstore = Chroma.from_documents(
documents=doc_splits,
collection_name="rag-chroma",
embedding=model_embedding,
persist_directory=db_path
)
logger.info("Logging artifact with mlflow")
shutil.make_archive(db_path, 'zip', db_path)
mlflow.log_artifact(db_path + '.zip', args.output_artifact)
@ -135,7 +138,7 @@ def go(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="A very basic data cleaning")
parser = argparse.ArgumentParser(description="ETL for ChromaDB with readable PDF")
parser.add_argument(
"--input_artifact",

View File

@ -0,0 +1,49 @@
name: rag_adaptive_evaluation
python_env: python_env.yml
entry_points:
main:
parameters:
query:
description: Query to run
type: string
evaluation_dataset_csv_path:
description: query evaluation dataset csv path
type: string
evaluation_dataset_column_question:
description: query evaluation dataset column question
type: string
evaluation_dataset_column_answer:
description: query evaluation dataset column groundtruth
type: string
input_chromadb_artifact:
description: Fully-qualified name for the input artifact
type: string
embedding_model:
description: Fully-qualified name for the embedding model
type: string
chat_model_provider:
description: Fully-qualified name for the chat model provider
type: string
ls_chat_model_evaluator:
description: list of chat model providers for evaluation
type: string
command: >-
python run.py --query {query} \
--evaluation_dataset_csv_path {evaluation_dataset_csv_path} \
--evaluation_dataset_column_question {evaluation_dataset_column_question} \
--evaluation_dataset_column_answer {evaluation_dataset_column_answer} \
--input_chromadb_artifact {input_chromadb_artifact} \
--embedding_model {embedding_model} \
--chat_model_provider {chat_model_provider} \
--ls_chat_model_evaluator {ls_chat_model_evaluator}

View File

@ -0,0 +1,32 @@
from typing import Literal
from pydantic import BaseModel, Field
class RouteQuery(BaseModel):
"""Route a user query to the most relevant datasource."""
datasource: Literal["vectorstore", "web_search"] = Field(
...,
description="Given a user question choose to route it to web search or a vectorstore.",
)
class GradeDocuments(BaseModel):
"""Binary score for relevance check on retrieved documents."""
binary_score: str = Field(
description="Documents are relevant to the question, 'yes' or 'no'"
)
class GradeHallucinations(BaseModel):
"""Binary score for hallucination present in generation answer."""
binary_score: str = Field(
description="Answer is grounded in the facts, 'yes' or 'no'"
)
class GradeAnswer(BaseModel):
"""Binary score to assess answer addresses question."""
binary_score: str = Field(
description="Answer addresses the question, 'yes' or 'no'"
)

View File

@ -0,0 +1,141 @@
import os
from decouple import config
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_deepseek import ChatDeepSeek
from langchain_community.llms.moonshot import Moonshot
from pydantic import BaseModel, Field
from prompts_library import CORRECTNESS_PROMPT, FAITHFULNESS_PROMPT
os.environ["GOOGLE_API_KEY"] = config("GOOGLE_API_KEY", cast=str)
os.environ["DEEPSEEK_API_KEY"] = config("DEEPSEEK_API_KEY", cast=str)
os.environ["MOONSHOT_API_KEY"] = config("MOONSHOT_API_KEY", cast=str)
# Define output schema for the evaluation
class CorrectnessGrade(BaseModel):
score: int = Field(description="Numerical score (1-5) indicating the correctness of the response.")
class FaithfulnessGrade(BaseModel):
score: int = Field(description="Numerical score (1-5) indicating the faithfulness of the response.")
# Evaluators
def gemini_evaluator_correctness(outputs: dict, reference_outputs: dict) -> CorrectnessGrade:
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-flash",
temperature=0.5,
)
messages = [
{"role": "system", "content": CORRECTNESS_PROMPT},
{"role": "user", "content": f"""Ground Truth answer: {reference_outputs["answer"]};
Student's Answer: {outputs['response']}
"""}
]
response = llm.invoke(messages)
return CorrectnessGrade(score=int(response.content)).score
def deepseek_evaluator_correctness(outputs: dict, reference_outputs: dict) -> CorrectnessGrade:
llm = ChatDeepSeek(
model="deepseek-chat",
temperature=0.5,
)
messages = [
{"role": "system", "content": CORRECTNESS_PROMPT},
{"role": "user", "content": f"""Ground Truth answer: {reference_outputs["answer"]};
Student's Answer: {outputs['response']}
"""}
]
response = llm.invoke(messages)
return CorrectnessGrade(score=int(response.content)).score
def moonshot_evaluator_correctness(outputs: dict, reference_outputs: dict) -> CorrectnessGrade:
llm = Moonshot(
model="moonshot-v1-128k",
temperature=0.5,
)
messages = [
{"role": "system", "content": CORRECTNESS_PROMPT},
{"role": "user", "content": f"""Ground Truth answer: {reference_outputs["answer"]};
Student's Answer: {outputs['response']}
"""}
]
response = llm.invoke(messages)
try:
return CorrectnessGrade(score=int(response)).score
except ValueError:
score_str = response.split(":")[1].strip()
return CorrectnessGrade(score=int(score_str)).score
def gemini_evaluator_faithfulness(outputs: dict, reference_outputs: dict) -> FaithfulnessGrade:
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-pro",
temperature=0.5,
)
messages = [
{"role": "system", "content": FAITHFULNESS_PROMPT},
{"role": "user", "content": f"""Context: {reference_outputs["answer"]};
Output: {outputs['response']}
"""}
]
response = llm.invoke(messages)
return FaithfulnessGrade(score=int(response.content)).score
def deepseek_evaluator_faithfulness(outputs: dict, reference_outputs: dict) -> FaithfulnessGrade:
llm = ChatDeepSeek(
model="deepseek-chat",
temperature=0.5,
)
messages = [
{"role": "system", "content": FAITHFULNESS_PROMPT},
{"role": "user", "content": f"""Context: {reference_outputs["answer"]};
Output: {outputs['response']}
"""}
]
response = llm.invoke(messages)
return FaithfulnessGrade(score=int(response.content)).score
def moonshot_evaluator_faithfulness(outputs: dict, reference_outputs: dict) -> FaithfulnessGrade:
llm = Moonshot(
model="moonshot-v1-128k",
temperature=0.5,
)
messages = [
{"role": "system", "content": FAITHFULNESS_PROMPT},
{"role": "user", "content": f"""Context: {reference_outputs["answer"]};
Output: {outputs['response']}
"""}
]
response = llm.invoke(messages)
try:
return FaithfulnessGrade(score=int(response)).score
except ValueError:
score_str = response.split(":")[1].strip()
return FaithfulnessGrade(score=int(score_str)).score

View File

@ -0,0 +1,78 @@
system_router = """You are an expert at routing a user question to a vectorstore or web search.
The vectorstore contains documents related to any cancer/tumor disease. The question may be
asked in a variety of languages, and may be phrased in a variety of ways.
Use the vectorstore for questions on these topics. Otherwise, use web-search.
"""
system_retriever_grader = """You are a grader assessing relevance of a retrieved document to a user question. \n
If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. \n
It does not need to be a stringent test. The goal is to filter out erroneous retrievals. \n
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question."""
system_hallucination_grader = """You are a grader assessing whether an LLM generation is grounded in / supported by a set of retrieved facts. \n
Give a binary score 'yes' or 'no'. 'Yes' means that the answer is grounded in / supported by the set of facts."""
system_answer_grader = """You are a grader assessing whether an answer addresses / resolves a question \n
Give a binary score 'yes' or 'no'. Yes' means that the answer resolves the question."""
system_question_rewriter = """You a question re-writer that converts an input question to a better version that is optimized \n
for vectorstore retrieval. Look at the input and try to reason about the underlying semantic intent / meaning."""
# Evaluation
CORRECTNESS_PROMPT = """You are an impartial judge. Evaluate Student Answer against Ground Truth for conceptual similarity and correctness.
You may also be given additional information that was used by the model to generate the output.
Your task is to determine a numerical score called correctness based on the Student Answer and Ground Truth.
A definition of correctness and a grading rubric are provided below.
You must use the grading rubric to determine your score.
Metric definition:
Correctness assesses the degree to which a provided Student Answer aligns with factual accuracy, completeness, logical
consistency, and precise terminology of the Ground Truth. It evaluates the intrinsic validity of the Student Answer , independent of any
external context. A higher score indicates a higher adherence to factual accuracy, completeness, logical consistency,
and precise terminology of the Ground Truth.
Grading rubric:
Correctness: Below are the details for different scores:
- 1: Major factual errors, highly incomplete, illogical, and uses incorrect terminology.
- 2: Significant factual errors, incomplete, noticeable logical flaws, and frequent terminology errors.
- 3: Minor factual errors, somewhat incomplete, minor logical inconsistencies, and occasional terminology errors.
- 4: Few to no factual errors, mostly complete, strong logical consistency, and accurate terminology.
- 5: Accurate, complete, logically consistent, and uses precise terminology.
Reminder:
- Carefully read the Student Answer and Ground Truth
- Check for factual accuracy and completeness of Student Answer compared to the Ground Truth
- Focus on correctness of information rather than style or verbosity
- The goal is to evaluate factual correctness and completeness of the Student Answer.
- Please provide your answer score only with the numerical number between 1 and 5. No score: or other text is allowed.
"""
FAITHFULNESS_PROMPT = """You are an impartial judge. Evaluate output against context for faithfulness.
You may also be given additional information that was used by the model to generate the Output.
Your task is to determine a numerical score called faithfulness based on the output and context.
A definition of faithfulness and a grading rubric are provided below.
You must use the grading rubric to determine your score.
Metric definition:
Faithfulness is only evaluated with the provided output and context. Faithfulness assesses how much of the
provided output is factually consistent with the provided context. A higher score indicates that a higher proportion of
claims present in the output can be derived from the provided context. Faithfulness does not consider how much extra
information from the context is not present in the output.
Grading rubric:
Faithfulness: Below are the details for different scores:
- Score 1: None of the claims in the output can be inferred from the provided context.
- Score 2: Some of the claims in the output can be inferred from the provided context, but the majority of the output is missing from, inconsistent with, or contradictory to the provided context.
- Score 3: Half or more of the claims in the output can be inferred from the provided context.
- Score 4: Most of the claims in the output can be inferred from the provided context, with very little information that is not directly supported by the provided context.
- Score 5: All of the claims in the output are directly supported by the provided context, demonstrating high faithfulness to the provided context.
Reminder:
- Carefully read the output and context
- Focus on the information instead of the writing style or verbosity.
- Please provide your answer score only with the numerical number between 1 and 5, according to the grading rubric above. No score: or other text is allowed.
"""

View File

@ -0,0 +1,29 @@
# Python version required to run the project.
python: "3.11.11"
# Dependencies required to build packages. This field is optional.
build_dependencies:
- pip==23.3.1
- setuptools
- wheel==0.37.1
- chromadb
- langchain
- sentence_transformers
- python-decouple
- langchain_google_genai
- langchain-deepseek
- langchain-openai
- langchain-community
- mlflow[genai]
- langsmith
- openai
- tiktoken
- langchainhub
- langgraph
- langchain-text-splitters
- langchain-cohere
- tavily-python
- langchain_huggingface
- pydantic
# Dependencies required to run the project.
dependencies:
- mlflow==2.8.1

View File

@ -0,0 +1,600 @@
import os
import logging
import argparse
import mlflow
import shutil
import langsmith
from decouple import config
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_deepseek import ChatDeepSeek
from langchain_community.llms.moonshot import Moonshot
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores.chroma import Chroma
from typing import List
from typing_extensions import TypedDict
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.schema import Document
from pprint import pprint
from langgraph.graph import END, StateGraph, START
from langsmith import Client
from data_models import (
RouteQuery,
GradeDocuments,
GradeHallucinations,
GradeAnswer
)
from prompts_library import (
system_router,
system_retriever_grader,
system_hallucination_grader,
system_answer_grader,
system_question_rewriter
)
from evaluators import (
gemini_evaluator_correctness,
deepseek_evaluator_correctness,
moonshot_evaluator_correctness,
gemini_evaluator_faithfulness,
deepseek_evaluator_faithfulness,
moonshot_evaluator_faithfulness
)
logging.basicConfig(level=logging.INFO, format="%(asctime)-15s %(message)s")
logger = logging.getLogger()
os.environ["GOOGLE_API_KEY"] = config("GOOGLE_API_KEY", cast=str)
os.environ["DEEPSEEK_API_KEY"] = config("DEEPSEEK_API_KEY", cast=str)
os.environ["MOONSHOT_API_KEY"] = config("MOONSHOT_API_KEY", cast=str)
os.environ["TAVILY_API_KEY"] = config("TAVILY_API_KEY", cast=str)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["LANGSMITH_API_KEY"] = config("LANGSMITH_API_KEY", cast=str)
os.environ["LANGSMITH_TRACING"] = config("LANGSMITH_TRACING", cast=str)
os.environ["LANGSMITH_ENDPOINT"] = "https://api.smith.langchain.com"
os.environ["LANGSMITH_PROJECT"] = config("LANGSMITH_PROJECT", cast=str)
def go(args):
# start a new MLflow run
with mlflow.start_run(experiment_id=mlflow.get_experiment_by_name("development").experiment_id, run_name="etl_chromdb_pdf"):
existing_params = mlflow.get_run(mlflow.active_run().info.run_id).data.params
if 'query' not in existing_params:
mlflow.log_param('query', args.query)
# Log parameters to MLflow
mlflow.log_params({
"input_chromadb_artifact": args.input_chromadb_artifact,
"embedding_model": args.embedding_model,
"chat_model_provider": args.chat_model_provider
})
logger.info("Downloading chromadb artifact")
artifact_chromadb_local_path = mlflow.artifacts.download_artifacts(artifact_uri=args.input_chromadb_artifact)
# unzip the artifact
logger.info("Unzipping the artifact")
shutil.unpack_archive(artifact_chromadb_local_path, "chroma_db")
# Initialize embedding model (do this ONCE)
embedding_model = HuggingFaceEmbeddings(model_name=args.embedding_model)
if args.chat_model_provider == 'deepseek':
llm = ChatDeepSeek(
model="deepseek-chat",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
)
elif args.chat_model_provider == 'gemini':
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-flash",
temperature=0,
max_retries=3,
streaming=True
)
elif args.chat_model_provider == 'moonshot':
llm = Moonshot(
model="moonshot-v1-128k",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
)
# Load data from ChromaDB
db_folder = "chroma_db"
db_path = os.path.join(os.getcwd(), db_folder)
collection_name = "rag-chroma"
vectorstore = Chroma(persist_directory=db_path, collection_name=collection_name, embedding_function=embedding_model)
retriever = vectorstore.as_retriever()
##########################################
# Routing to vectorstore or web search
structured_llm_router = llm.with_structured_output(RouteQuery)
# Prompt
route_prompt = ChatPromptTemplate.from_messages(
[
("system", system_router),
("human", "{question}"),
]
)
question_router = route_prompt | structured_llm_router
##########################################
### Retrieval Grader
structured_llm_grader = llm.with_structured_output(GradeDocuments)
# Prompt
grade_prompt = ChatPromptTemplate.from_messages(
[
("system", system_retriever_grader),
("human", "Retrieved document: \n\n {document} \n\n User question: {question}"),
]
)
retrieval_grader = grade_prompt | structured_llm_grader
##########################################
### Generate
from langchain import hub
from langchain_core.output_parsers import StrOutputParser
# Prompt
prompt = hub.pull("rlm/rag-prompt")
# Post-processing
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
# Chain
rag_chain = prompt | llm | StrOutputParser()
##########################################
### Hallucination Grader
structured_llm_grader = llm.with_structured_output(GradeHallucinations)
# Prompt
hallucination_prompt = ChatPromptTemplate.from_messages(
[
("system", system_hallucination_grader),
("human", "Set of facts: \n\n {documents} \n\n LLM generation: {generation}"),
]
)
hallucination_grader = hallucination_prompt | structured_llm_grader
##########################################
### Answer Grader
structured_llm_grader = llm.with_structured_output(GradeAnswer)
# Prompt
answer_prompt = ChatPromptTemplate.from_messages(
[
("system", system_answer_grader),
("human", "User question: \n\n {question} \n\n LLM generation: {generation}"),
]
)
answer_grader = answer_prompt | structured_llm_grader
##########################################
### Question Re-writer
# Prompt
re_write_prompt = ChatPromptTemplate.from_messages(
[
("system", system_question_rewriter),
(
"human",
"Here is the initial question: \n\n {question} \n Formulate an improved question.",
),
]
)
question_rewriter = re_write_prompt | llm | StrOutputParser()
### Search
web_search_tool = TavilySearchResults(k=3)
class GraphState(TypedDict):
"""
Represents the state of our graph.
Attributes:
question: question
generation: LLM generation
documents: list of documents
"""
question: str
generation: str
documents: List[str]
def retrieve(state):
"""
Retrieve documents
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, documents, that contains retrieved documents
"""
print("---RETRIEVE---")
question = state["question"]
# Retrieval
documents = retriever.invoke(question)
print(documents)
return {"documents": documents, "question": question}
def generate(state):
"""
Generate answer
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, generation, that contains LLM generation
"""
print("---GENERATE---")
question = state["question"]
documents = state["documents"]
# RAG generation
generation = rag_chain.invoke({"context": documents, "question": question})
return {"documents": documents, "question": question, "generation": generation}
def grade_documents(state):
"""
Determines whether the retrieved documents are relevant to the question.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates documents key with only filtered relevant documents
"""
print("---CHECK DOCUMENT RELEVANCE TO QUESTION---")
question = state["question"]
documents = state["documents"]
# Score each doc
filtered_docs = []
for d in documents:
score = retrieval_grader.invoke(
{"question": question, "document": d.page_content}
)
grade = score.binary_score
if grade == "yes":
print("---GRADE: DOCUMENT RELEVANT---")
filtered_docs.append(d)
else:
print("---GRADE: DOCUMENT NOT RELEVANT---")
continue
return {"documents": filtered_docs, "question": question}
def transform_query(state):
"""
Transform the query to produce a better question.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates question key with a re-phrased question
"""
print("---TRANSFORM QUERY---")
question = state["question"]
documents = state["documents"]
# Re-write question
better_question = question_rewriter.invoke({"question": question})
return {"documents": documents, "question": better_question}
def web_search(state):
"""
Web search based on the re-phrased question.
Args:
state (dict): The current graph state
Returns:
state (dict): Updates documents key with appended web results
"""
print("---WEB SEARCH---")
question = state["question"]
# Web search
docs = web_search_tool.invoke({"query": question})
web_results = "\n".join([d["content"] for d in docs])
web_results = Document(page_content=web_results)
return {"documents": web_results, "question": question}
### Edges ###
def route_question(state):
"""
Route question to web search or RAG.
Args:
state (dict): The current graph state
Returns:
str: Next node to call
"""
print("---ROUTE QUESTION---")
question = state["question"]
source = question_router.invoke({"question": question})
if source.datasource == "web_search":
print("---ROUTE QUESTION TO WEB SEARCH---")
return "web_search"
elif source.datasource == "vectorstore":
print("---ROUTE QUESTION TO RAG---")
return "vectorstore"
def decide_to_generate(state):
"""
Determines whether to generate an answer, or re-generate a question.
Args:
state (dict): The current graph state
Returns:
str: Binary decision for next node to call
"""
print("---ASSESS GRADED DOCUMENTS---")
state["question"]
filtered_documents = state["documents"]
if not filtered_documents:
# All documents have been filtered check_relevance
# We will re-generate a new query
print(
"---DECISION: ALL DOCUMENTS ARE NOT RELEVANT TO QUESTION, TRANSFORM QUERY---"
)
return "transform_query"
else:
# We have relevant documents, so generate answer
print("---DECISION: GENERATE---")
return "generate"
def grade_generation_v_documents_and_question(state):
"""
Determines whether the generation is grounded in the document and answers question.
Args:
state (dict): The current graph state
Returns:
str: Decision for next node to call
"""
print("---CHECK HALLUCINATIONS---")
question = state["question"]
documents = state["documents"]
generation = state["generation"]
score = hallucination_grader.invoke(
{"documents": documents, "generation": generation}
)
grade = score.binary_score
# Check hallucination
if grade == "yes":
print("---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---")
# Check question-answering
print("---GRADE GENERATION vs QUESTION---")
score = answer_grader.invoke({"question": question, "generation": generation})
grade = score.binary_score
if grade == "yes":
print("---DECISION: GENERATION ADDRESSES QUESTION---")
return "useful"
else:
print("---DECISION: GENERATION DOES NOT ADDRESS QUESTION---")
return "not useful"
else:
pprint("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, RE-TRY---")
return "not supported"
workflow = StateGraph(GraphState)
# Define the nodes
workflow.add_node("web_search", web_search) # web search
workflow.add_node("retrieve", retrieve) # retrieve
workflow.add_node("grade_documents", grade_documents) # grade documents
workflow.add_node("generate", generate) # generatae
workflow.add_node("transform_query", transform_query) # transform_query
# Build graph
workflow.add_conditional_edges(
START,
route_question,
{
"web_search": "web_search",
"vectorstore": "retrieve",
},
)
workflow.add_edge("web_search", "generate")
workflow.add_edge("retrieve", "grade_documents")
workflow.add_conditional_edges(
"grade_documents",
decide_to_generate,
{
"transform_query": "transform_query",
"generate": "generate",
},
)
workflow.add_edge("transform_query", "retrieve")
workflow.add_conditional_edges(
"generate",
grade_generation_v_documents_and_question,
{
"not supported": "generate",
"useful": END,
"not useful": "transform_query",
},
)
# Compile
app = workflow.compile()
# Run
inputs = {
"question": args.query
}
for output in app.stream(inputs):
for key, value in output.items():
# Node
pprint(f"Node '{key}':")
# Optional: print full state at each node
# pprint.pprint(value["keys"], indent=2, width=80, depth=None)
pprint("\n---\n")
# Final generation
print(value["generation"])
return {"response": value["generation"]}
def go_evaluation(args):
if args.evaluation_dataset_csv_path:
import pandas as pd
df = pd.read_csv(args.evaluation_dataset_csv_path)
dataset_name = os.path.basename(args.evaluation_dataset_csv_path).split('.')[0]
# df contains columns of question and answer
examples = df[[args.evaluation_dataset_column_question, args.evaluation_dataset_column_answer]].values.tolist()
inputs = [{"question": input_prompt} for input_prompt, _ in examples]
outputs = [{"answer": output_answer} for _, output_answer in examples]
# Programmatically create a dataset in LangSmith
client = Client()
try:
# Create a dataset
dataset = client.create_dataset(
dataset_name = dataset_name,
description = "An evaluation dataset in LangSmith."
)
# Add examples to the dataset
client.create_examples(inputs=inputs, outputs=outputs, dataset_id=dataset.id)
except langsmith.utils.LangSmithConflictError:
pass
args.ls_chat_model_evaluator = None if args.ls_chat_model_evaluator == 'None' else args.ls_chat_model_evaluator.split(',')
def target(inputs: dict) -> dict:
new_args = argparse.Namespace(**vars(args))
new_args.query = inputs["question"]
return go(new_args)
ls_evaluators = []
if args.ls_chat_model_evaluator:
for evaluator in args.ls_chat_model_evaluator:
if evaluator == 'moonshot':
ls_evaluators.append(moonshot_evaluator_correctness)
ls_evaluators.append(moonshot_evaluator_faithfulness)
elif evaluator == 'deepseek':
ls_evaluators.append(deepseek_evaluator_correctness)
ls_evaluators.append(deepseek_evaluator_faithfulness)
elif evaluator == 'gemini':
ls_evaluators.append(gemini_evaluator_correctness)
ls_evaluators.append(gemini_evaluator_faithfulness)
# After running the evaluation, a link will be provided to view the results in langsmith
_ = client.evaluate(
target,
data = dataset_name,
evaluators = ls_evaluators,
experiment_prefix = "first-eval-in-langsmith",
max_concurrency = 1,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Adaptive AG")
parser.add_argument(
"--query",
type=str,
help="Question to ask the model",
required=True
)
parser.add_argument(
"--evaluation_dataset_csv_path",
type=str,
help="Path to the query evaluation dataset",
default=None,
)
parser.add_argument(
"--evaluation_dataset_column_question",
type=str,
help="Column name for the questions in the evaluation dataset",
default="question",
)
parser.add_argument(
"--evaluation_dataset_column_answer",
type=str,
help="Column name for the groundtruth answers in the evaluation dataset",
default="groundtruth",
)
parser.add_argument(
"--input_chromadb_artifact",
type=str,
help="Fully-qualified name for the chromadb artifact",
required=True
)
parser.add_argument(
"--embedding_model",
type=str,
default="paraphrase-multilingual-mpnet-base-v2",
help="Sentence Transformer model name"
)
parser.add_argument(
"--chat_model_provider",
type=str,
default="gemini",
help="Chat model provider"
)
parser.add_argument(
"--ls_chat_model_evaluator",
type=str,
help="list of Chat model providers for evaluation",
required=False,
default="None"
)
args = parser.parse_args()
go_evaluation(args)

View File

@ -12,6 +12,7 @@ build_dependencies:
- langchain_google_genai
- langchain-deepseek
- langchain-community
- mlflow[genai]
# Dependencies required to run the project.
dependencies:
- mlflow==2.8.1

View File

@ -14,10 +14,14 @@ from langchain_community.llms.moonshot import Moonshot
logging.basicConfig(level=logging.INFO, format="%(asctime)-15s %(message)s")
logger = logging.getLogger()
os.environ["GOOGLE_API_KEY"] = config("GOOGLE_API_KEY", cast=str)
os.environ["DEEPSEEK_API_KEY"] = config("DEEPSEEK_API_KEY", cast=str)
os.environ["MOONSHOT_API_KEY"] = config("MOONSHOT_API_KEY", cast=str)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
GEMINI_API_KEY = config("GOOGLE_API_KEY", cast=str)
DEEKSEEK_API_KEY = config("DEEKSEEK_API_KEY", cast=str)
MOONSHOT_API_KEY = config("MOONSHOT_API_KEY", cast=str)
os.environ["LANGSMITH_API_KEY"] = config("LANGSMITH_API_KEY", cast=str)
os.environ["LANGSMITH_TRACING"] = config("LANGSMITH_TRACING", cast=str)
os.environ["LANGSMITH_ENDPOINT"] = "https://api.smith.langchain.com"
os.environ["LANGSMITH_PROJECT"] = config("LANGSMITH_PROJECT", cast=str)
def go(args):
@ -46,7 +50,7 @@ def go(args):
db_folder = "chroma_db"
db_path = os.path.join(os.getcwd(), db_folder)
chroma_client = chromadb.PersistentClient(path=db_path)
collection_name = "rag_experiment"
collection_name = "rag-chroma"
collection = chroma_client.get_collection(name=collection_name)
# Formulate a question
@ -60,14 +64,12 @@ def go(args):
max_tokens=None,
timeout=None,
max_retries=2,
api_key=DEEKSEEK_API_KEY
)
elif args.chat_model_provider == "gemini":
# Initialize Gemini model
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-flash",
google_api_key=GEMINI_API_KEY,
temperature=0,
max_retries=3
)
@ -80,7 +82,6 @@ def go(args):
max_tokens=None,
timeout=None,
max_retries=2,
api_key=MOONSHOT_API_KEY
)

View File

@ -11,9 +11,6 @@ from langchain_community.llms.moonshot import Moonshot
import torch
torch.classes.__path__ = [os.path.join(torch.__path__[0], torch.classes.__file__)]
# # # or simply:
# torch.classes.__path__ = []
os.environ["TOKENIZERS_PARALLELISM"] = "false"
GEMINI_API_KEY = config("GOOGLE_API_KEY", cast=str, default="123456")
@ -22,7 +19,7 @@ MOONSHOT_API_KEY = config("MOONSHOT_API_KEY", cast=str, default="123456")
CHAT_MODEL_PROVIDER = config("CHAT_MODEL_PROVIDER", cast=str, default="gemini")
INPUT_CHROMADB_LOCAL = config("INPUT_CHROMADB_LOCAL", cast=str, default="../llmops/src/rag_cot_evaluation/chroma_db")
EMBEDDING_MODEL = config("EMBEDDING_MODEL", cast=str, default="paraphrase-multilingual-mpnet-base-v2")
COLLECTION_NAME = config("COLLECTION_NAME", cast=str, default="rag_experiment")
COLLECTION_NAME = config("COLLECTION_NAME", cast=str, default="rag-chroma")
st.title("💬 RAG AI for Medical Guideline")
st.caption(f"🚀 A RAG AI for Medical Guideline powered by {CHAT_MODEL_PROVIDER}")
@ -31,15 +28,12 @@ if "messages" not in st.session_state:
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
print('i am here1')
# Load data from ChromaDB
chroma_client = chromadb.PersistentClient(path=INPUT_CHROMADB_LOCAL)
collection = chroma_client.get_collection(name=COLLECTION_NAME)
print('i am here2')
# Initialize embedding model
model = SentenceTransformer(EMBEDDING_MODEL)
print('i am here3')
if CHAT_MODEL_PROVIDER == "deepseek":
# Initialize DeepSeek model
@ -88,7 +82,6 @@ Provide the answer with language that is similar to the question asked.
"""
answer_prompt = PromptTemplate(template=answer_template, input_variables=["cot", "question"])
answer_chain = answer_prompt | llm
print('i am here4')
if prompt := st.chat_input():

View File

@ -2,17 +2,23 @@ FROM python:3.11-slim
WORKDIR /app/streamlit
COPY requirements.txt ./
COPY Pipfile ./
RUN pip install --no-cache-dir -r requirements.txt
# RUN pip install --no-cache-dir -r requirements.txt
# RUN pip install -r requirements.txt
RUN pip install --upgrade pip setuptools wheel -i https://pypi.tuna.tsinghua.edu.cn/simple
RUN pip install pipenv -i https://pypi.tuna.tsinghua.edu.cn/simple
RUN pipenv install --deploy
COPY Chatbot.py .
COPY .env .
# Run python to initialize download of SentenceTransformer model
COPY initialize_sentence_transformer.py .
RUN python initialize_sentence_transformer.py
RUN pipenv run python initialize_sentence_transformer.py
COPY pages ./pages
EXPOSE 8501
ENTRYPOINT ["streamlit", "run", "Chatbot.py"]
ENTRYPOINT ["pipenv", "run", "streamlit", "run", "Chatbot.py"]

View File

@ -4,7 +4,7 @@ verify_ssl = true
name = "pypi"
[packages]
streamlit = "==1.28"
streamlit = "*"
langchain = "*"
duckduckgo-search = "*"
anthropic = "*"
@ -12,7 +12,7 @@ trubrics = "*"
streamlit-feedback = "*"
langchain-community = "*"
watchdog = "*"
mlflow = "==2.8.1"
mlflow = "*"
python-decouple = "*"
langchain_google_genai = "*"
langchain-deepseek = "*"

View File

@ -1,7 +1,7 @@
{
"_meta": {
"hash": {
"sha256": "68da9f2cf2dea795e4bb8d4f5b108a40e1fe4255c7d8dbe9233f9db6f993f876"
"sha256": "97652b705fea7df9b9012ec199d87df451e67beee8fc9368748e3886a0f5566f"
},
"pipfile-spec": 6,
"requires": {
@ -10,7 +10,7 @@
"sources": [
{
"name": "pypi",
"url": "https://pypi.org/simple",
"url": "https://pypi.tuna.tsinghua.edu.cn/simple",
"verify_ssl": true
}
]
@ -18,11 +18,11 @@
"default": {
"aiohappyeyeballs": {
"hashes": [
"sha256:19728772cb12263077982d2f55453babd8bec6a052a926cd5c0c42796da8bf62",
"sha256:6cac4f5dd6e34a9644e69cf9021ef679e4394f54e58a183056d12009e42ea9e3"
"sha256:0850b580748c7071db98bffff6d4c94028d0d3035acc20fd721a0ce7e8cac35d",
"sha256:18fde6204a76deeabc97c48bdd01d5801cfda5d6b9c8bbeb1aaaee9d648ca191"
],
"markers": "python_version >= '3.9'",
"version": "==2.4.8"
"version": "==2.5.0"
},
"aiohttp": {
"hashes": [
@ -764,11 +764,11 @@
},
"fsspec": {
"hashes": [
"sha256:1c24b16eaa0a1798afa0337aa0db9b256718ab2a89c425371f5628d22c3b6afd",
"sha256:9de2ad9ce1f85e1931858535bc882543171d197001a0a5eb2ddc04f1781ab95b"
"sha256:a935fd1ea872591f2b5148907d103488fc523295e6c64b835cfad8c3eca44972",
"sha256:efb87af3efa9103f94ca91a7f8cb7a4df91af9f74fc106c9c7ea0efd7277c1b3"
],
"markers": "python_version >= '3.8'",
"version": "==2025.2.0"
"version": "==2025.3.0"
},
"gitdb": {
"hashes": [
@ -788,22 +788,30 @@
},
"google-ai-generativelanguage": {
"hashes": [
"sha256:494f73c44dede1fd6853e579efe590f139d0654481d2a5bdadfc415ec5351d3d",
"sha256:b53c736b8ebed75fe040d48740b0a15370d75e7dbc72249fb7acd2c9171bc072"
"sha256:5a03ef86377aa184ffef3662ca28f19eeee158733e45d7947982eb953c6ebb6c",
"sha256:8f6d9dc4c12b065fe2d0289026171acea5183ebf2d0b11cefe12f3821e159ec3"
],
"markers": "python_version >= '3.7'",
"version": "==0.6.16"
"version": "==0.6.15"
},
"google-api-core": {
"extras": [
"grpc"
],
"hashes": [
"sha256:bc78d608f5a5bf853b80bd70a795f703294de656c096c0968320830a4bc280f1",
"sha256:f8b36f5456ab0dd99a1b693a40a31d1e7757beea380ad1b38faaf8941eae9d8a"
"sha256:810a63ac95f3c441b7c0e43d344e372887f62ce9071ba972eacf32672e072de9",
"sha256:81718493daf06d96d6bc76a91c23874dbf2fac0adbbf542831b805ee6e974696"
],
"markers": "python_version >= '3.7'",
"version": "==2.24.1"
"version": "==2.24.2"
},
"google-api-python-client": {
"hashes": [
"sha256:080e8bc0669cb4c1fb8efb8da2f5b91a2625d8f0e7796cfad978f33f7016c6c4",
"sha256:88dee87553a2d82176e2224648bf89272d536c8f04dcdda37ef0a71473886dd7"
],
"markers": "python_version >= '3.7'",
"version": "==2.163.0"
},
"google-auth": {
"hashes": [
@ -813,74 +821,84 @@
"markers": "python_version >= '3.7'",
"version": "==2.38.0"
},
"google-auth-httplib2": {
"hashes": [
"sha256:38aa7badf48f974f1eb9861794e9c0cb2a0511a4ec0679b1f886d108f5640e05",
"sha256:b65a0a2123300dd71281a7bf6e64d65a0759287df52729bdd1ae2e47dc311a3d"
],
"version": "==0.2.0"
},
"google-generativeai": {
"hashes": [
"sha256:e987b33ea6decde1e69191ddcaec6ef974458864d243de7191db50c21a7c5b82"
],
"markers": "python_version >= '3.9'",
"version": "==0.8.4"
},
"googleapis-common-protos": {
"hashes": [
"sha256:17835fdc4fa8da1d61cfe2d4d5d57becf7c61d4112f8d81c67eaa9d7ce43042d",
"sha256:5a46d58af72846f59009b9c4710425b9af2139555c71837081706b213b298187"
"sha256:4077f27a6900d5946ee5a369fab9c8ded4c0ef1c6e880458ea2f70c14f7b70d5",
"sha256:e20d2d8dda87da6fe7340afbbdf4f0bcb4c8fae7e6cadf55926c31f946b0b9b1"
],
"markers": "python_version >= '3.7'",
"version": "==1.69.0"
"version": "==1.69.1"
},
"grpcio": {
"hashes": [
"sha256:0495c86a55a04a874c7627fd33e5beaee771917d92c0e6d9d797628ac40e7655",
"sha256:07269ff4940f6fb6710951116a04cd70284da86d0a4368fd5a3b552744511f5a",
"sha256:0a5c78d5198a1f0aa60006cd6eb1c912b4a1520b6a3968e677dbcba215fabb40",
"sha256:0ba0a173f4feacf90ee618fbc1a27956bfd21260cd31ced9bc707ef551ff7dc7",
"sha256:0cd430b9215a15c10b0e7d78f51e8a39d6cf2ea819fd635a7214fae600b1da27",
"sha256:0de706c0a5bb9d841e353f6343a9defc9fc35ec61d6eb6111802f3aa9fef29e1",
"sha256:17325b0be0c068f35770f944124e8839ea3185d6d54862800fc28cc2ffad205a",
"sha256:2394e3381071045a706ee2eeb6e08962dd87e8999b90ac15c55f56fa5a8c9597",
"sha256:27cc75e22c5dba1fbaf5a66c778e36ca9b8ce850bf58a9db887754593080d839",
"sha256:2b0d02e4b25a5c1f9b6c7745d4fa06efc9fd6a611af0fb38d3ba956786b95199",
"sha256:374d014f29f9dfdb40510b041792e0e2828a1389281eb590df066e1cc2b404e5",
"sha256:3b0f01f6ed9994d7a0b27eeddea43ceac1b7e6f3f9d86aeec0f0064b8cf50fdb",
"sha256:4119fed8abb7ff6c32e3d2255301e59c316c22d31ab812b3fbcbaf3d0d87cc68",
"sha256:412faabcc787bbc826f51be261ae5fa996b21263de5368a55dc2cf824dc5090e",
"sha256:4f1937f47c77392ccd555728f564a49128b6a197a05a5cd527b796d36f3387d0",
"sha256:5413549fdf0b14046c545e19cfc4eb1e37e9e1ebba0ca390a8d4e9963cab44d2",
"sha256:558c386ecb0148f4f99b1a65160f9d4b790ed3163e8610d11db47838d452512d",
"sha256:58ad9ba575b39edef71f4798fdb5c7b6d02ad36d47949cd381d4392a5c9cbcd3",
"sha256:5ea67c72101d687d44d9c56068328da39c9ccba634cabb336075fae2eab0d04b",
"sha256:7385b1cb064734005204bc8994eed7dcb801ed6c2eda283f613ad8c6c75cf873",
"sha256:7c73c42102e4a5ec76608d9b60227d917cea46dff4d11d372f64cbeb56d259d0",
"sha256:8058667a755f97407fca257c844018b80004ae8035565ebc2812cc550110718d",
"sha256:879a61bf52ff8ccacbedf534665bb5478ec8e86ad483e76fe4f729aaef867cab",
"sha256:880bfb43b1bb8905701b926274eafce5c70a105bc6b99e25f62e98ad59cb278e",
"sha256:8d1584a68d5922330025881e63a6c1b54cc8117291d382e4fa69339b6d914c56",
"sha256:95469d1977429f45fe7df441f586521361e235982a0b39e33841549143ae2851",
"sha256:9e654c4b17d07eab259d392e12b149c3a134ec52b11ecdc6a515b39aceeec898",
"sha256:a31d7e3b529c94e930a117b2175b2efd179d96eb3c7a21ccb0289a8ab05b645c",
"sha256:aa47688a65643afd8b166928a1da6247d3f46a2784d301e48ca1cc394d2ffb40",
"sha256:aa573896aeb7d7ce10b1fa425ba263e8dddd83d71530d1322fd3a16f31257b4a",
"sha256:aba19419aef9b254e15011b230a180e26e0f6864c90406fdbc255f01d83bc83c",
"sha256:ac073fe1c4cd856ebcf49e9ed6240f4f84d7a4e6ee95baa5d66ea05d3dd0df7f",
"sha256:b3c76701428d2df01964bc6479422f20e62fcbc0a37d82ebd58050b86926ef8c",
"sha256:b745d2c41b27650095e81dea7091668c040457483c9bdb5d0d9de8f8eb25e59f",
"sha256:bb491125103c800ec209d84c9b51f1c60ea456038e4734688004f377cfacc113",
"sha256:c1af8e15b0f0fe0eac75195992a63df17579553b0c4af9f8362cc7cc99ccddf4",
"sha256:c78b339869f4dbf89881e0b6fbf376313e4f845a42840a7bdf42ee6caed4b11f",
"sha256:cb5277db254ab7586769e490b7b22f4ddab3876c490da0a1a9d7c695ccf0bf77",
"sha256:cbce24409beaee911c574a3d75d12ffb8c3e3dd1b813321b1d7a96bbcac46bf4",
"sha256:cd24d2d9d380fbbee7a5ac86afe9787813f285e684b0271599f95a51bce33528",
"sha256:ce7df14b2dcd1102a2ec32f621cc9fab6695effef516efbc6b063ad749867295",
"sha256:d24035d49e026353eb042bf7b058fb831db3e06d52bee75c5f2f3ab453e71aca",
"sha256:d405b005018fd516c9ac529f4b4122342f60ec1cee181788249372524e6db429",
"sha256:d63764963412e22f0491d0d32833d71087288f4e24cbcddbae82476bfa1d81fd",
"sha256:dbe41ad140df911e796d4463168e33ef80a24f5d21ef4d1e310553fcd2c4a386",
"sha256:dfa089a734f24ee5f6880c83d043e4f46bf812fcea5181dcb3a572db1e79e01c",
"sha256:e27585831aa6b57b9250abaf147003e126cd3a6c6ca0c531a01996f31709bed1",
"sha256:e7831a0fc1beeeb7759f737f5acd9fdcda520e955049512d68fda03d91186eea",
"sha256:ed9718f17fbdb472e33b869c77a16d0b55e166b100ec57b016dc7de9c8d236bf",
"sha256:ef4c14508299b1406c32bdbb9fb7b47612ab979b04cf2b27686ea31882387cff",
"sha256:f19375f0300b96c0117aca118d400e76fede6db6e91f3c34b7b035822e06c35f",
"sha256:f2af68a6f5c8f78d56c145161544ad0febbd7479524a59c16b3e25053f39c87f",
"sha256:f32090238b720eb585248654db8e3afc87b48d26ac423c8dde8334a232ff53c9",
"sha256:fe9dbd916df3b60e865258a8c72ac98f3ac9e2a9542dcb72b7a34d236242a5ce",
"sha256:ff4a8112a79464919bb21c18e956c54add43ec9a4850e3949da54f61c241a4a6"
"sha256:0ab8b2864396663a5b0b0d6d79495657ae85fa37dcb6498a2669d067c65c11ea",
"sha256:0fa05ee31a20456b13ae49ad2e5d585265f71dd19fbd9ef983c28f926d45d0a7",
"sha256:0ff35c8d807c1c7531d3002be03221ff9ae15712b53ab46e2a0b4bb271f38537",
"sha256:1be857615e26a86d7363e8a163fade914595c81fec962b3d514a4b1e8760467b",
"sha256:20e8f653abd5ec606be69540f57289274c9ca503ed38388481e98fa396ed0b41",
"sha256:22c3bc8d488c039a199f7a003a38cb7635db6656fa96437a8accde8322ce2366",
"sha256:24e867651fc67717b6f896d5f0cac0ec863a8b5fb7d6441c2ab428f52c651c6b",
"sha256:2b85f7820475ad3edec209d3d89a7909ada16caab05d3f2e08a7e8ae3200a55c",
"sha256:39983a9245d37394fd59de71e88c4b295eb510a3555e0a847d9965088cdbd033",
"sha256:3d081e859fb1ebe176de33fc3adb26c7d46b8812f906042705346b314bde32c3",
"sha256:469f42a0b410883185eab4689060a20488a1a0a00f8bbb3cbc1061197b4c5a79",
"sha256:47be9584729534660416f6d2a3108aaeac1122f6b5bdbf9fd823e11fe6fbaa29",
"sha256:4be74ddeeb92cc87190e0e376dbc8fc7736dbb6d3d454f2fa1f5be1dee26b9d7",
"sha256:4dd0dfbe4d5eb1fcfec9490ca13f82b089a309dc3678e2edabc144051270a66e",
"sha256:5b08d03ace7aca7b2fadd4baf291139b4a5f058805a8327bfe9aece7253b6d67",
"sha256:63e41b91032f298b3e973b3fa4093cbbc620c875e2da7b93e249d4728b54559a",
"sha256:652350609332de6dac4ece254e5d7e1ff834e203d6afb769601f286886f6f3a8",
"sha256:693bc706c031aeb848849b9d1c6b63ae6bcc64057984bb91a542332b75aa4c3d",
"sha256:74258dce215cb1995083daa17b379a1a5a87d275387b7ffe137f1d5131e2cfbb",
"sha256:789d5e2a3a15419374b7b45cd680b1e83bbc1e52b9086e49308e2c0b5bbae6e3",
"sha256:7c9c80ac6091c916db81131d50926a93ab162a7e97e4428ffc186b6e80d6dda4",
"sha256:7d6ac9481d9d0d129224f6d5934d5832c4b1cddb96b59e7eba8416868909786a",
"sha256:85da336e3649a3d2171e82f696b5cad2c6231fdd5bad52616476235681bee5b3",
"sha256:8700a2a57771cc43ea295296330daaddc0d93c088f0a35cc969292b6db959bf3",
"sha256:8997d6785e93308f277884ee6899ba63baafa0dfb4729748200fcc537858a509",
"sha256:9182e0063112e55e74ee7584769ec5a0b4f18252c35787f48738627e23a62b97",
"sha256:9b91879d6da1605811ebc60d21ab6a7e4bae6c35f6b63a061d61eb818c8168f6",
"sha256:a2242d6950dc892afdf9e951ed7ff89473aaf744b7d5727ad56bdaace363722b",
"sha256:a371e6b6a5379d3692cc4ea1cb92754d2a47bdddeee755d3203d1f84ae08e03e",
"sha256:a76d39b5fafd79ed604c4be0a869ec3581a172a707e2a8d7a4858cb05a5a7637",
"sha256:ad9f30838550695b5eb302add33f21f7301b882937460dd24f24b3cc5a95067a",
"sha256:b2266862c5ad664a380fbbcdbdb8289d71464c42a8c29053820ee78ba0119e5d",
"sha256:b78a99cd1ece4be92ab7c07765a0b038194ded2e0a26fd654591ee136088d8d7",
"sha256:c200cb6f2393468142eb50ab19613229dcc7829b5ccee8b658a36005f6669fdd",
"sha256:c30f393f9d5ff00a71bb56de4aa75b8fe91b161aeb61d39528db6b768d7eac69",
"sha256:c6a0a28450c16809f94e0b5bfe52cabff63e7e4b97b44123ebf77f448534d07d",
"sha256:cebc1b34ba40a312ab480ccdb396ff3c529377a2fce72c45a741f7215bfe8379",
"sha256:d2c170247315f2d7e5798a22358e982ad6eeb68fa20cf7a820bb74c11f0736e7",
"sha256:d35a95f05a8a2cbe8e02be137740138b3b2ea5f80bd004444e4f9a1ffc511e32",
"sha256:d5170929109450a2c031cfe87d6716f2fae39695ad5335d9106ae88cc32dc84c",
"sha256:d6aa986318c36508dc1d5001a3ff169a15b99b9f96ef5e98e13522c506b37eef",
"sha256:d6de81c9c00c8a23047136b11794b3584cdc1460ed7cbc10eada50614baa1444",
"sha256:dc1a1231ed23caac1de9f943d031f1bc38d0f69d2a3b243ea0d664fc1fbd7fec",
"sha256:e6beeea5566092c5e3c4896c6d1d307fb46b1d4bdf3e70c8340b190a69198594",
"sha256:e6d8de076528f7c43a2f576bc311799f89d795aa6c9b637377cc2b1616473804",
"sha256:e6f83a583ed0a5b08c5bc7a3fe860bb3c2eac1f03f1f63e0bc2091325605d2b7",
"sha256:f250ff44843d9a0615e350c77f890082102a0318d66a99540f54769c8766ab73",
"sha256:f71574afdf944e6652203cd1badcda195b2a27d9c83e6d88dc1ce3cfb73b31a5",
"sha256:f903017db76bf9cc2b2d8bdd37bf04b505bbccad6be8a81e1542206875d0e9db",
"sha256:f9a412f55bb6e8f3bb000e020dbc1e709627dcb3a56f6431fa7076b4c1aab0db",
"sha256:f9c30c464cb2ddfbc2ddf9400287701270fdc0f14be5f08a1e3939f1e749b455"
],
"markers": "python_version >= '3.8'",
"version": "==1.70.0"
"markers": "python_version >= '3.9'",
"version": "==1.71.0"
},
"grpcio-status": {
"hashes": [
@ -914,6 +932,14 @@
"markers": "python_version >= '3.8'",
"version": "==1.0.7"
},
"httplib2": {
"hashes": [
"sha256:14ae0a53c1ba8f3d37e9e27cf37eabb0fb9980f435ba405d546948b009dd64dc",
"sha256:d7a10bc5ef5ab08322488bde8c726eeee5c8618723fdb399597ec58f3d82df81"
],
"markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'",
"version": "==0.22.0"
},
"httptools": {
"hashes": [
"sha256:0614154d5454c21b6410fdf5262b4a3ddb0f53f1e1721cfd59d55f32138c578a",
@ -981,11 +1007,11 @@
},
"huggingface-hub": {
"hashes": [
"sha256:590b29c0dcbd0ee4b7b023714dc1ad8563fe4a68a91463438b74e980d28afaf3",
"sha256:c56f20fca09ef19da84dcde2b76379ecdaddf390b083f59f166715584953307d"
"sha256:0b25710932ac649c08cdbefa6c6ccb8e88eef82927cacdb048efb726429453aa",
"sha256:64519a25716e0ba382ba2d3fb3ca082e7c7eb4a2fc634d200e8380006e0760e5"
],
"markers": "python_full_version >= '3.8.0'",
"version": "==0.29.2"
"version": "==0.29.3"
},
"humanfriendly": {
"hashes": [
@ -1029,93 +1055,93 @@
},
"jinja2": {
"hashes": [
"sha256:8fefff8dc3034e27bb80d67c671eb8a9bc424c0ef4c0826edbff304cceff43bb",
"sha256:aba0f4dc9ed8013c424088f68a5c226f7d6097ed89b246d7749c2ec4175c6adb"
"sha256:0137fb05990d35f1275a587e9aee6d56da821fc83491a0fb838183be43f66d6d",
"sha256:85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67"
],
"markers": "python_version >= '3.7'",
"version": "==3.1.5"
"version": "==3.1.6"
},
"jiter": {
"hashes": [
"sha256:025337859077b41548bdcbabe38698bcd93cfe10b06ff66617a48ff92c9aec60",
"sha256:03c9df035d4f8d647f8c210ddc2ae0728387275340668fb30d2421e17d9a0841",
"sha256:08d4c92bf480e19fc3f2717c9ce2aa31dceaa9163839a311424b6862252c943e",
"sha256:0cf5dfa9956d96ff2efb0f8e9c7d055904012c952539a774305aaaf3abdf3d6c",
"sha256:14601dcac4889e0a1c75ccf6a0e4baf70dbc75041e51bcf8d0e9274519df6887",
"sha256:180a8aea058f7535d1c84183c0362c710f4750bef66630c05f40c93c2b152a0f",
"sha256:1c0dfbd1be3cbefc7510102370d86e35d1d53e5a93d48519688b1bf0f761160a",
"sha256:2dd61c5afc88a4fda7d8b2cf03ae5947c6ac7516d32b7a15bf4b49569a5c076b",
"sha256:317b25e98a35ffec5c67efe56a4e9970852632c810d35b34ecdd70cc0e47b3b6",
"sha256:32475a42b2ea7b344069dc1e81445cfc00b9d0e3ca837f0523072432332e9f74",
"sha256:37b2998606d6dadbb5ccda959a33d6a5e853252d921fec1792fc902351bb4e2c",
"sha256:3ac9f578c46f22405ff7f8b1f5848fb753cc4b8377fbec8470a7dc3997ca7566",
"sha256:3b94a33a241bee9e34b8481cdcaa3d5c2116f575e0226e421bed3f7a6ea71cff",
"sha256:4a9220497ca0cb1fe94e3f334f65b9b5102a0b8147646118f020d8ce1de70105",
"sha256:4ab9a87f3784eb0e098f84a32670cfe4a79cb6512fd8f42ae3d0709f06405d18",
"sha256:5127dc1abd809431172bc3fbe8168d6b90556a30bb10acd5ded41c3cfd6f43b6",
"sha256:5672a86d55416ccd214c778efccf3266b84f87b89063b582167d803246354be4",
"sha256:580ccf358539153db147e40751a0b41688a5ceb275e6f3e93d91c9467f42b2e3",
"sha256:58dc9bc9767a1101f4e5e22db1b652161a225874d66f0e5cb8e2c7d1c438b587",
"sha256:5a90a923338531b7970abb063cfc087eebae6ef8ec8139762007188f6bc69a9f",
"sha256:653cf462db4e8c41995e33d865965e79641ef45369d8a11f54cd30888b7e6ff1",
"sha256:66227a2c7b575720c1871c8800d3a0122bb8ee94edb43a5685aa9aceb2782d44",
"sha256:6e5337bf454abddd91bd048ce0dca5134056fc99ca0205258766db35d0a2ea43",
"sha256:70bf4c43652cc294040dbb62256c83c8718370c8b93dd93d934b9a7bf6c4f53c",
"sha256:711e408732d4e9a0208008e5892c2966b485c783cd2d9a681f3eb147cf36c7ef",
"sha256:76e324da7b5da060287c54f2fabd3db5f76468006c811831f051942bf68c9d44",
"sha256:789361ed945d8d42850f919342a8665d2dc79e7e44ca1c97cc786966a21f627a",
"sha256:79aec8172b9e3c6d05fd4b219d5de1ac616bd8da934107325a6c0d0e866a21b6",
"sha256:7efe4853ecd3d6110301665a5178b9856be7e2a9485f49d91aa4d737ad2ae49e",
"sha256:7f22b16b35d5c1df9dfd58843ab2cd25e6bf15191f5a236bed177afade507bfc",
"sha256:83c0efd80b29695058d0fd2fa8a556490dbce9804eac3e281f373bbc99045f6c",
"sha256:859e8eb3507894093d01929e12e267f83b1d5f6221099d3ec976f0c995cb6bd9",
"sha256:8b9931fd36ee513c26b5bf08c940b0ac875de175341cbdd4fa3be109f0492586",
"sha256:8bd2a824d08d8977bb2794ea2682f898ad3d8837932e3a74937e93d62ecbb637",
"sha256:8f2d5ed877f089862f4c7aacf3a542627c1496f972a34d0474ce85ee7d939c27",
"sha256:8ffc86ae5e3e6a93765d49d1ab47b6075a9c978a2b3b80f0f32628f39caa0c88",
"sha256:92249669925bc1c54fcd2ec73f70f2c1d6a817928480ee1c65af5f6b81cdf12d",
"sha256:99d9a1eded738299ba8e106c6779ce5c3893cffa0e32e4485d680588adae6db8",
"sha256:9c63eaef32b7bebac8ebebf4dabebdbc6769a09c127294db6babee38e9f405b9",
"sha256:9e1fa156ee9454642adb7e7234a383884452532bc9d53d5af2d18d98ada1d79c",
"sha256:a2ecaa3c23e7a7cf86d00eda3390c232f4d533cd9ddea4b04f5d0644faf642c5",
"sha256:a6c710d657c8d1d2adbbb5c0b0c6bfcec28fd35bd6b5f016395f9ac43e878a15",
"sha256:a9584de0cd306072635fe4b89742bf26feae858a0683b399ad0c2509011b9dc0",
"sha256:ab7f43235d71e03b941c1630f4b6e3055d46b6cb8728a17663eaac9d8e83a865",
"sha256:af102d3372e917cffce49b521e4c32c497515119dc7bd8a75665e90a718bbf08",
"sha256:b25bd626bde7fb51534190c7e3cb97cee89ee76b76d7585580e22f34f5e3f393",
"sha256:b2dd880785088ff2ad21ffee205e58a8c1ddabc63612444ae41e5e4b321b39c0",
"sha256:b426f72cd77da3fec300ed3bc990895e2dd6b49e3bfe6c438592a3ba660e41ca",
"sha256:ba5bdf56969cad2019d4e8ffd3f879b5fdc792624129741d3d83fc832fef8c7d",
"sha256:bf55846c7b7a680eebaf9c3c48d630e1bf51bdf76c68a5f654b8524335b0ad29",
"sha256:ca1f08b8e43dc3bd0594c992fb1fd2f7ce87f7bf0d44358198d6da8034afdf84",
"sha256:ca29b6371ebc40e496995c94b988a101b9fbbed48a51190a4461fcb0a68b4a36",
"sha256:ca8577f6a413abe29b079bc30f907894d7eb07a865c4df69475e868d73e71c7b",
"sha256:cadcc978f82397d515bb2683fc0d50103acff2a180552654bb92d6045dec2c49",
"sha256:cd646c827b4f85ef4a78e4e58f4f5854fae0caf3db91b59f0d73731448a970c6",
"sha256:cd73d3e740666d0e639f678adb176fad25c1bcbdae88d8d7b857e1783bb4212d",
"sha256:cde031d8413842a1e7501e9129b8e676e62a657f8ec8166e18a70d94d4682855",
"sha256:ce0820f4a3a59ddced7fce696d86a096d5cc48d32a4183483a17671a61edfddc",
"sha256:d20be8b7f606df096e08b0b1b4a3c6f0515e8dac296881fe7461dfa0fb5ec817",
"sha256:d21974d246ed0181558087cd9f76e84e8321091ebfb3a93d4c341479a736f099",
"sha256:d33f94615fcaf872f7fd8cd98ac3b429e435c77619777e8a449d9d27e01134d1",
"sha256:d35c864c2dff13dfd79fb070fc4fc6235d7b9b359efe340e1261deb21b9fcb66",
"sha256:d5c826a221851a8dc028eb6d7d6429ba03184fa3c7e83ae01cd6d3bd1d4bd17d",
"sha256:e41e75344acef3fc59ba4765df29f107f309ca9e8eace5baacabd9217e52a5ee",
"sha256:e52bf98c7e727dd44f7c4acb980cb988448faeafed8433c867888268899b298b",
"sha256:e6ec2be506e7d6f9527dae9ff4b7f54e68ea44a0ef6b098256ddf895218a2f8f",
"sha256:e725edd0929fa79f8349ab4ec7f81c714df51dc4e991539a578e5018fa4a7152",
"sha256:eaa58399c01db555346647a907b4ef6d4f584b123943be6ed5588c3f2359c9f4",
"sha256:eb21aaa9a200d0a80dacc7a81038d2e476ffe473ffdd9c91eb745d623561de05",
"sha256:ecff0dc14f409599bbcafa7e470c00b80f17abc14d1405d38ab02e4b42e55b57",
"sha256:f557c55bc2b7676e74d39d19bcb8775ca295c7a028246175d6a8b431e70835e5",
"sha256:f7200b8f7619d36aa51c803fd52020a2dfbea36ffec1b5e22cab11fd34d95a6d",
"sha256:f9d471356dc16f84ed48768b8ee79f29514295c7295cb41e1133ec0b2b8d637d",
"sha256:fc5adda618205bd4678b146612ce44c3cbfdee9697951f2c0ffdef1f26d72b63",
"sha256:fc9043259ee430ecd71d178fccabd8c332a3bf1e81e50cae43cc2b28d19e4cb7",
"sha256:ffd9fee7d0775ebaba131f7ca2e2d83839a62ad65e8e02fe2bd8fc975cedeb9e"
"sha256:04e8ffa3c353b1bc4134f96f167a2082494351e42888dfcf06e944f2729cbe1d",
"sha256:062b756ceb1d40b0b28f326cba26cfd575a4918415b036464a52f08632731e5a",
"sha256:099500d07b43f61d8bd780466d429c45a7b25411b334c60ca875fa775f68ccb0",
"sha256:0c058ecb51763a67f019ae423b1cbe3fa90f7ee6280c31a1baa6ccc0c0e2d06e",
"sha256:113f30f87fb1f412510c6d7ed13e91422cfd329436364a690c34c8b8bd880c42",
"sha256:11509bfecbc319459647d4ac3fd391d26fdf530dad00c13c4dadabf5b81f01a4",
"sha256:1339f839b91ae30b37c409bf16ccd3dc453e8b8c3ed4bd1d6a567193651a4a51",
"sha256:1537a890724ba00fdba21787010ac6f24dad47f763410e9e1093277913592784",
"sha256:161d461dcbe658cf0bd0aa375b30a968b087cdddc624fc585f3867c63c6eca95",
"sha256:17f5d55eb856597607562257c8e36c42bc87f16bef52ef7129b7da11afc779f3",
"sha256:1fd19112d1049bdd47f17bfbb44a2c0001061312dcf0e72765bfa8abd4aa30e5",
"sha256:203f28a72a05ae0e129b3ed1f75f56bc419d5f91dfacd057519a8bd137b00c42",
"sha256:2221176dfec87f3470b21e6abca056e6b04ce9bff72315cb0b243ca9e835a4b5",
"sha256:2228eaaaa111ec54b9e89f7481bffb3972e9059301a878d085b2b449fbbde635",
"sha256:237e5cee4d5d2659aaf91bbf8ec45052cc217d9446070699441a91b386ae27dc",
"sha256:2685f44bf80e95f8910553bf2d33b9c87bf25fceae6e9f0c1355f75d2922b0ee",
"sha256:2764891d3f3e8b18dce2cff24949153ee30c9239da7c00f032511091ba688ff7",
"sha256:27cd1f2e8bb377f31d3190b34e4328d280325ad7ef55c6ac9abde72f79e84d2e",
"sha256:2e89dc075c1fef8fa9be219e249f14040270dbc507df4215c324a1839522ea75",
"sha256:351f4c90a24c4fb8c87c6a73af2944c440494ed2bea2094feecacb75c50398ae",
"sha256:387b22fbfd7a62418d5212b4638026d01723761c75c1c8232a8b8c37c2f1003b",
"sha256:3c7adb66f899ffa25e3c92bfcb593391ee1947dbdd6a9a970e0d7e713237d572",
"sha256:3f22238da568be8bbd8e0650e12feeb2cfea15eda4f9fc271d3b362a4fa0604d",
"sha256:40d8da8629ccae3606c61d9184970423655fb4e33d03330bcdfe52d234d32f69",
"sha256:42f8a68a69f047b310319ef8e2f52fdb2e7976fb3313ef27df495cf77bcad965",
"sha256:4a2d16360d0642cd68236f931b85fe50288834c383492e4279d9f1792e309571",
"sha256:4feafe787eb8a8d98168ab15637ca2577f6ddf77ac6c8c66242c2d028aa5420e",
"sha256:51c4e1a4f8ea84d98b7b98912aa4290ac3d1eabfde8e3c34541fae30e9d1f08b",
"sha256:528b6b71745e7326eed73c53d4aa57e2a522242320b6f7d65b9c5af83cf49b6e",
"sha256:5cfc7d0a8e899089d11f065e289cb5b2daf3d82fbe028f49b20d7b809193958d",
"sha256:5f4c677c424dc76684fea3e7285a7a2a7493424bea89ac441045e6a1fb1d7b3b",
"sha256:609cf3c78852f1189894383cf0b0b977665f54cb38788e3e6b941fa6d982c00e",
"sha256:699edfde481e191d81f9cf6d2211debbfe4bd92f06410e7637dffb8dd5dfde06",
"sha256:6a99bed9fbb02f5bed416d137944419a69aa4c423e44189bc49718859ea83bc5",
"sha256:6c4d99c71508912a7e556d631768dcdef43648a93660670986916b297f1c54af",
"sha256:6ef5da104664e526836070e4a23b5f68dec1cc673b60bf1edb1bfbe8a55d0678",
"sha256:6f7838bc467ab7e8ef9f387bd6de195c43bad82a569c1699cb822f6609dd4cdf",
"sha256:7825f46e50646bee937e0f849d14ef3a417910966136f59cd1eb848b8b5bb3e4",
"sha256:7a9aaa5102dba4e079bb728076fadd5a2dca94c05c04ce68004cfd96f128ea34",
"sha256:7b46249cfd6c48da28f89eb0be3f52d6fdb40ab88e2c66804f546674e539ec11",
"sha256:816ec9b60fdfd1fec87da1d7ed46c66c44ffec37ab2ef7de5b147b2fce3fd5ad",
"sha256:8793b6df019b988526f5a633fdc7456ea75e4a79bd8396a3373c371fc59f5c9b",
"sha256:8f60fb8ce7df529812bf6c625635a19d27f30806885139e367af93f6e734ef58",
"sha256:923b54afdd697dfd00d368b7ccad008cccfeb1efb4e621f32860c75e9f25edbd",
"sha256:9872aeff3f21e437651df378cb75aeb7043e5297261222b6441a620218b58708",
"sha256:9897115ad716c48f0120c1f0c4efae348ec47037319a6c63b2d7838bb53aaef4",
"sha256:9b1d3086f8a3ee0194ecf2008cf81286a5c3e540d977fa038ff23576c023c0ea",
"sha256:9ef340fae98065071ccd5805fe81c99c8f80484e820e40043689cf97fb66b3e2",
"sha256:9f3c848209ccd1bfa344a1240763975ca917de753c7875c77ec3034f4151d06c",
"sha256:9f48e86b57bc711eb5acdfd12b6cb580a59cc9a993f6e7dcb6d8b50522dcd50d",
"sha256:a1be73d8982bdc278b7b9377426a4b44ceb5c7952073dd7488e4ae96b88e1103",
"sha256:a25519efb78a42254d59326ee417d6f5161b06f5da827d94cf521fed961b1ff2",
"sha256:a7954a401d0a8a0b8bc669199db78af435aae1e3569187c2939c477c53cb6a0a",
"sha256:aadba0964deb424daa24492abc3d229c60c4a31bfee205aedbf1acc7639d7893",
"sha256:c0194f813efdf4b8865ad5f5c5f50f8566df7d770a82c51ef593d09e0b347020",
"sha256:c43ca669493626d8672be3b645dbb406ef25af3f4b6384cfd306da7eb2e70322",
"sha256:c8ae3bf27cd1ac5e6e8b7a27487bf3ab5f82318211ec2e1346a5b058756361f7",
"sha256:c98d27330fdfb77913c1097a7aab07f38ff2259048949f499c9901700789ac15",
"sha256:cb12e6d65ebbefe5518de819f3eda53b73187b7089040b2d17f5b39001ff31c4",
"sha256:d1d9870561eb26b11448854dce0ff27a9a27cb616b632468cafc938de25e9e51",
"sha256:d45807b0f236c485e1e525e2ce3a854807dfe28ccf0d013dd4a563395e28008a",
"sha256:d726a3890a54561e55a9c5faea1f7655eda7f105bd165067575ace6e65f80bb2",
"sha256:d82a811928b26d1a6311a886b2566f68ccf2b23cf3bfed042e18686f1f22c2d7",
"sha256:d838650f6ebaf4ccadfb04522463e74a4c378d7e667e0eb1865cfe3990bfac49",
"sha256:dd5ab5ddc11418dce28343123644a100f487eaccf1de27a459ab36d6cca31043",
"sha256:e00a1a2bbfaaf237e13c3d1592356eab3e9015d7efd59359ac8b51eb56390a12",
"sha256:e057adb0cd1bd39606100be0eafe742de2de88c79df632955b9ab53a086b3c8d",
"sha256:e3630ec20cbeaddd4b65513fa3857e1b7c4190d4481ef07fb63d0fad59033321",
"sha256:e84ed1c9c9ec10bbb8c37f450077cbe3c0d4e8c2b19f0a49a60ac7ace73c7452",
"sha256:e8b36d8a16a61993be33e75126ad3d8aa29cf450b09576f3c427d27647fcb4aa",
"sha256:eda3f8cc74df66892b1d06b5d41a71670c22d95a1ca2cbab73654745ce9d0419",
"sha256:efb767d92c63b2cd9ec9f24feeb48f49574a713870ec87e9ba0c2c6e9329c3e2",
"sha256:f0b2827fb88dda2cbecbbc3e596ef08d69bda06c6f57930aec8e79505dc17001",
"sha256:f7e6850991f3940f62d387ccfa54d1a92bd4bb9f89690b53aea36b4364bcab53",
"sha256:fca1a02ad60ec30bb230f65bc01f611c8608b02d269f998bc29cca8619a919dc",
"sha256:ffba79584b3b670fefae66ceb3a28822365d25b7bf811e030609a3d5b876f538"
],
"markers": "python_version >= '3.8'",
"version": "==0.8.2"
"version": "==0.9.0"
},
"joblib": {
"hashes": [
@ -1271,11 +1297,11 @@
},
"langchain-core": {
"hashes": [
"sha256:1a27cca5333bae7597de4004fb634b5f3e71667a3da6493b94ce83bcf15a23bd",
"sha256:d3ee9f3616ebbe7943470ade23d4a04e1729b1512c0ec55a4a07bd2ac64dedb4"
"sha256:bec60f4f5665b536434ff747b8f23375a812e82cfa529f519b54cc1e7a94a875",
"sha256:caa6bc1f4c6ab71d3c2e400f8b62e1cd6dc5ac2c37e03f12f3e2c60befd5b273"
],
"markers": "python_version >= '3.9' and python_version < '4.0'",
"version": "==0.3.41"
"version": "==0.3.43"
},
"langchain-deepseek": {
"hashes": [
@ -1288,20 +1314,20 @@
},
"langchain-google-genai": {
"hashes": [
"sha256:c98b18524a78fcc7084ba5ac69ea6a1a69b0b693255de68245b98bbbc3f08e87",
"sha256:ff6997eee872f0732036129173f4c1740b03fbb1f13251805d51d6c08bf8b34d"
"sha256:964a7542fd11fdec7592052b4eaef383227f7c4fa4d754a455e4bf0634f4ad28",
"sha256:b51067b468853856f275bb7b1a85dbaf4467b59fe67e35fcd614fc0d744c810e"
],
"index": "pypi",
"markers": "python_version >= '3.9' and python_version < '4.0'",
"version": "==2.0.11"
"version": "==2.0.10"
},
"langchain-openai": {
"hashes": [
"sha256:0aefc7bdf8e7398d41e09c4313cace816df6438f2aa93d34f79523487310f0da",
"sha256:b8b51a3aaa1cc3bda060651ea41145f7728219e8a7150b5404fb1e8446de9cef"
"sha256:4d73727eda8102d1d07a2ca036278fccab0bb5e0abf353cec9c3973eb72550ec",
"sha256:9004dc8ef853aece0d8f0feca7753dc97f710fa3e53874c8db66466520436dbb"
],
"markers": "python_version >= '3.9' and python_version < '4.0'",
"version": "==0.3.7"
"version": "==0.3.8"
},
"langchain-text-splitters": {
"hashes": [
@ -1313,11 +1339,11 @@
},
"langsmith": {
"hashes": [
"sha256:0cca22737ef07d3b038a437c141deda37e00add56022582680188b681bec095e",
"sha256:ddf29d24352e99de79c9618aaf95679214324e146c5d3d9475a7ddd2870018b1"
"sha256:14014058cff408772acb93344e03cb64174837292d5f1ae09b2c8c1d8df45e92",
"sha256:73aaf52bbc293b9415fff4f6dad68df40658081eb26c9cb2c7bd1ff57cedd695"
],
"markers": "python_version >= '3.9' and python_version < '4.0'",
"version": "==0.3.11"
"version": "==0.3.13"
},
"lxml": {
"hashes": [
@ -1828,11 +1854,11 @@
},
"narwhals": {
"hashes": [
"sha256:1021c345d56c66ff0cc8e6d03ca8c543d01ffc411630973a5cb69ee86824d823",
"sha256:653aa8e5eb435816e7b50c8def17e7e5e3324c2ffd8a3eec03fef85792e9cf5e"
"sha256:0c50cc67a5404da501302882838ec17dce51703d22cd8ad89162d6f60ea0bb19",
"sha256:443aa0a1abfae89bc65a6b888a7e310a03d1818bfb2ccd61c150199a5f954c17"
],
"markers": "python_version >= '3.8'",
"version": "==1.29.0"
"version": "==1.30.0"
},
"networkx": {
"hashes": [
@ -1894,37 +1920,35 @@
},
"onnxruntime": {
"hashes": [
"sha256:06bfbf02ca9ab5f28946e0f912a562a5f005301d0c419283dc57b3ed7969bb7b",
"sha256:0df6f2df83d61f46e842dbcde610ede27218947c33e994545a22333491e72a3b",
"sha256:19c2d843eb074f385e8bbb753a40df780511061a63f9def1b216bf53860223fb",
"sha256:22b0655e2bf4f2161d52706e31f517a0e54939dc393e92577df51808a7edc8c9",
"sha256:4c4b251a725a3b8cf2aab284f7d940c26094ecd9d442f07dd81ab5470e99b83f",
"sha256:5eec64c0269dcdb8d9a9a53dc4d64f87b9e0c19801d9321246a53b7eb5a7d1bc",
"sha256:7b2908b50101a19e99c4d4e97ebb9905561daf61829403061c1adc1b588bc0de",
"sha256:8508887eb1c5f9537a4071768723ec7c30c28eb2518a00d0adcd32c89dea3221",
"sha256:a19bc6e8c70e2485a1725b3d517a2319603acc14c1f1a017dda0afe6d4665b41",
"sha256:bb71a814f66517a65628c9e4a2bb530a6edd2cd5d87ffa0af0f6f773a027d99e",
"sha256:bd386cc9ee5f686ee8a75ba74037750aca55183085bf1941da8efcfe12d5b120",
"sha256:bda6aebdf7917c1d811f21d41633df00c58aff2bef2f598f69289c1f1dabc4b3",
"sha256:c9158465745423b2b5d97ed25aa7740c7d38d2993ee2e5c3bfacb0c4145c49d8",
"sha256:cc01437a32d0042b606f462245c8bbae269e5442797f6213e36ce61d5abdd8cc",
"sha256:d30367df7e70f1d9fc5a6a68106f5961686d39b54d3221f760085524e8d38e16",
"sha256:d3b616bb53a77a9463707bb313637223380fc327f5064c9a782e8ec69c22e6a2",
"sha256:d82daaec24045a2e87598b8ac2b417b1cce623244e80e663882e9fe1aae86410",
"sha256:e50ba5ff7fed4f7d9253a6baf801ca2883cc08491f9d32d78a80da57256a5439",
"sha256:f1f56e898815963d6dc4ee1c35fc6c36506466eff6d16f3cb9848cea4e8c8172",
"sha256:f6243e34d74423bdd1edf0ae9596dd61023b260f546ee17d701723915f06a9f7",
"sha256:fb44b08e017a648924dbe91b82d89b0c105b1adcfe31e90d1dc06b8677ad37be"
"sha256:19b630c6a8956ef97fb7c94948b17691167aa1aaf07b5f214fa66c3e4136c108",
"sha256:1d970dff1e2fa4d9c53f2787b3b7d0005596866e6a31997b41169017d1362dd0",
"sha256:36b18b8f39c0f84e783902112a0dd3c102466897f96d73bb83f6a6bff283a423",
"sha256:37b7445c920a96271a8dfa16855e258dc5599235b41c7bbde0d262d55bcc105f",
"sha256:3995c4a2d81719623c58697b9510f8de9fa42a1da6b4474052797b0d712324fe",
"sha256:635d4ab13ae0f150dd4c6ff8206fd58f1c6600636ecc796f6f0c42e4c918585b",
"sha256:7d06bfa0dd5512bd164f25a2bf594b2e7c9eabda6fc064b684924f3e81bdab1b",
"sha256:7f801318476cd7003d636a5b392f7a37c08b6c8d2f829773f3c3887029e03f32",
"sha256:7f9156cf6f8ee133d07a751e6518cf6f84ed37fbf8243156bd4a2c4ee6e073c8",
"sha256:85718cbde1c2912d3a03e3b3dc181b1480258a229c32378408cace7c450f7f23",
"sha256:893d67c68ca9e7a58202fa8d96061ed86a5815b0925b5a97aef27b8ba246a20b",
"sha256:8a5d09815a9e209fa0cb20c2985b34ab4daeba7aea94d0f96b8751eb10403201",
"sha256:8e16f8a79df03919810852fb46ffcc916dc87a9e9c6540a58f20c914c575678c",
"sha256:94dff3a61538f3b7b0ea9a06bc99e1410e90509c76e3a746f039e417802a12ae",
"sha256:95513c9302bc8dd013d84148dcf3168e782a80cdbf1654eddc948a23147ccd3d",
"sha256:9a04aafb802c1e5573ba4552f8babcb5021b041eb4cfa802c9b7644ca3510eca",
"sha256:b0fc22d219791e0284ee1d9c26724b8ee3fbdea28128ef25d9507ad3b9621f23",
"sha256:c1e704b0eda5f2bbbe84182437315eaec89a450b08854b5a7762c85d04a28a0a"
],
"version": "==1.20.1"
"markers": "python_version >= '3.10'",
"version": "==1.21.0"
},
"openai": {
"hashes": [
"sha256:9b7cd8f79140d03d77f4ed8aeec6009be5dcd79bbc02f03b0e8cd83356004f71",
"sha256:a155fa5d60eccda516384d3d60d923e083909cc126f383fe4a350f79185c232a"
"sha256:17d39096bbcaf6c86580244b493a59e16613460147f0ba5ab6e608cdb6628149",
"sha256:5948a504e7b4003d921cfab81273813793a31c25b1d7b605797c01757e0141f1"
],
"markers": "python_version >= '3.8'",
"version": "==1.65.3"
"version": "==1.65.5"
},
"opentelemetry-api": {
"hashes": [
@ -2243,10 +2267,10 @@
},
"posthog": {
"hashes": [
"sha256:6865104b7cf3a5b13949e2bc2aab9b37b5fbf5f9e045fa55b9eabe21b3850200",
"sha256:ce115b8422f26c57cd4143499115b741f5683c93d0b5b87bab391579aaef084b"
"sha256:7abaa1f0fbcdde8f1c193f744fdc26de852c13a80b5f527c6eeba8516b20df76",
"sha256:b879bc257de287ea91a9545bab1a3d09ba22586f3c0370ef210e06631c4929bc"
],
"version": "==3.18.1"
"version": "==3.19.1"
},
"primp": {
"hashes": [
@ -2369,11 +2393,11 @@
},
"proto-plus": {
"hashes": [
"sha256:6e93d5f5ca267b54300880fff156b6a3386b3fa3f43b1da62e680fc0c586ef22",
"sha256:bf2dfaa3da281fc3187d12d224c707cb57214fb2c22ba854eb0c105a3fb2d4d7"
"sha256:13285478c2dcf2abb829db158e1047e2f1e8d63a077d94263c2b88b043c75a66",
"sha256:21a515a4c4c0088a773899e23c7bbade3d18f9c66c73edd4c7ee3816bc96a012"
],
"markers": "python_version >= '3.7'",
"version": "==1.26.0"
"version": "==1.26.1"
},
"protobuf": {
"hashes": [
@ -3092,11 +3116,11 @@
},
"setuptools": {
"hashes": [
"sha256:4880473a969e5f23f2a2be3646b2dfd84af9028716d398e46192f84bc36900d2",
"sha256:558e47c15f1811c1fa7adbd0096669bf76c1d3f433f58324df69f3f5ecac4e8f"
"sha256:199466a166ff664970d0ee145839f5582cb9bca7a0a3a2e795b6a9cb2308e9c6",
"sha256:43b4ee60e10b0d0ee98ad11918e114c70701bc6051662a9a675a0496c1a158f4"
],
"markers": "python_version >= '3.9'",
"version": "==75.8.2"
"version": "==76.0.0"
},
"shellingham": {
"hashes": [
@ -3203,11 +3227,11 @@
},
"starlette": {
"hashes": [
"sha256:913f0798bd90ba90a9156383bcf1350a17d6259451d0d8ee27fc0cf2db609038",
"sha256:b359e4567456b28d473d0193f34c0de0ed49710d75ef183a74a5ce0499324f50"
"sha256:3c88d58ee4bd1bb807c0d1acb381838afc7752f9ddaec81bbe4383611d833230",
"sha256:77c74ed9d2720138b25875133f3a2dae6d854af2ec37dceb56aef370c1d8a227"
],
"markers": "python_version >= '3.9'",
"version": "==0.46.0"
"version": "==0.46.1"
},
"streamlit": {
"hashes": [
@ -3426,11 +3450,19 @@
},
"tzlocal": {
"hashes": [
"sha256:2fafbfc07e9d8b49ade18f898d6bcd37ae88ce3ad6486842a2e4f03af68323d2",
"sha256:3814135a1bb29763c6e4f08fd6e41dbb435c7a60bfbb03270211bcc537187d8c"
"sha256:cceffc7edecefea1f595541dbd6e990cb1ea3d19bf01b2809f362a03dd7921fd",
"sha256:eb1a66c3ef5847adf7a834f1be0800581b683b5608e74f86ecbcef8ab91bb85d"
],
"markers": "python_version >= '3.9'",
"version": "==5.3"
"version": "==5.3.1"
},
"uritemplate": {
"hashes": [
"sha256:4346edfc5c3b79f694bccd6d6099a322bbeb628dbf2cd86eea55a456ce5124f0",
"sha256:830c08b8d99bdd312ea4ead05994a38e8936266f84b9a7878232db50b044e02e"
],
"markers": "python_version >= '3.6'",
"version": "==4.1.1"
},
"urllib3": {
"hashes": [
@ -3626,78 +3658,78 @@
},
"websockets": {
"hashes": [
"sha256:0e389efe46ccb25a1f93d08c7a74e8123a2517f7b7458f043bd7529d1a63ffeb",
"sha256:0f2205cdb444a42a7919690238fb5979a05439b9dbb73dd47c863d39640d85ab",
"sha256:10552fed076757a70ba2c18edcbc601c7637b30cdfe8c24b65171e824c7d6081",
"sha256:110a847085246ab8d4d119632145224d6b49e406c64f1bbeed45c6f05097b680",
"sha256:1206432cc6c644f6fc03374b264c5ff805d980311563202ed7fef91a38906276",
"sha256:1657a9eecb29d7838e3b415458cc494e6d1b194f7ac73a34aa55c6fb6c72d1f3",
"sha256:17f2854c6bd9ee008c4b270f7010fe2da6c16eac5724a175e75010aacd905b31",
"sha256:190bc6ef8690cd88232a038d1b15714c258f79653abad62f7048249b09438af3",
"sha256:1caf951110ca757b8ad9c4974f5cac7b8413004d2f29707e4d03a65d54cedf2b",
"sha256:24d5333a9b2343330f0f4eb88546e2c32a7f5c280f8dd7d3cc079beb0901781b",
"sha256:26ba70fed190708551c19a360f9d7eca8e8c0f615d19a574292b7229e0ae324c",
"sha256:2bd8ef197c87afe0a9009f7a28b5dc613bfc585d329f80b7af404e766aa9e8c7",
"sha256:2ea4f210422b912ebe58ef0ad33088bc8e5c5ff9655a8822500690abc3b1232d",
"sha256:30cff3ef329682b6182c01c568f551481774c476722020b8f7d0daacbed07a17",
"sha256:327adab7671f3726b0ba69be9e865bba23b37a605b585e65895c428f6e47e766",
"sha256:32e02a2d83f4954aa8c17e03fe8ec6962432c39aca4be7e8ee346b05a3476904",
"sha256:37d66646f929ae7c22c79bc73ec4074d6db45e6384500ee3e0d476daf55482a9",
"sha256:3a302241fbe825a3e4fe07666a2ab513edfdc6d43ce24b79691b45115273b5e7",
"sha256:3abd670ca7ce230d5a624fd3d55e055215d8d9b723adee0a348352f5d8d12ff4",
"sha256:4095a1f2093002c2208becf6f9a178b336b7572512ee0a1179731acb7788e8ad",
"sha256:45535fead66e873f411c1d3cf0d3e175e66f4dd83c4f59d707d5b3e4c56541c4",
"sha256:45d464622314973d78f364689d5dbb9144e559f93dca11b11af3f2480b5034e1",
"sha256:4f7290295794b5dec470867c7baa4a14182b9732603fd0caf2a5bf1dc3ccabf3",
"sha256:4ff380aabd7a74a42a760ee76c68826a8f417ceb6ea415bd574a035a111fd133",
"sha256:51ffd53c53c4442415b613497a34ba0aa7b99ac07f1e4a62db5dcd640ae6c3c3",
"sha256:5294fcb410ed0a45d5d1cdedc4e51a60aab5b2b3193999028ea94afc2f554b05",
"sha256:56e3efe356416bc67a8e093607315951d76910f03d2b3ad49c4ade9207bf710d",
"sha256:5d3cc75ef3e17490042c47e0523aee1bcc4eacd2482796107fd59dd1100a44bc",
"sha256:5e6ee18a53dd5743e6155b8ff7e8e477c25b29b440f87f65be8165275c87fef0",
"sha256:67a04754d121ea5ca39ddedc3f77071651fb5b0bc6b973c71c515415b44ed9c5",
"sha256:7394c0b7d460569c9285fa089a429f58465db930012566c03046f9e3ab0ed181",
"sha256:789c43bf4a10cd067c24c321238e800b8b2716c863ddb2294d2fed886fa5a689",
"sha256:7ac67b542505186b3bbdaffbc303292e1ee9c8729e5d5df243c1f20f4bb9057e",
"sha256:8561c48b0090993e3b2a54db480cab1d23eb2c5735067213bb90f402806339f5",
"sha256:86bfb52a9cfbcc09aba2b71388b0a20ea5c52b6517c0b2e316222435a8cdab72",
"sha256:8711682a629bbcaf492f5e0af72d378e976ea1d127a2d47584fa1c2c080b436b",
"sha256:89da58e4005e153b03fe8b8794330e3f6a9774ee9e1c3bd5bc52eb098c3b0c4f",
"sha256:89f72524033abbfde880ad338fd3c2c16e31ae232323ebdfbc745cbb1b3dcc03",
"sha256:8bf1ab71f9f23b0a1d52ec1682a3907e0c208c12fef9c3e99d2b80166b17905f",
"sha256:8d7bbbe2cd6ed80aceef2a14e9f1c1b61683194c216472ed5ff33b700e784e37",
"sha256:94c4a9b01eede952442c088d415861b0cf2053cbd696b863f6d5022d4e4e2453",
"sha256:98dcf978d4c6048965d1762abd534c9d53bae981a035bfe486690ba11f49bbbb",
"sha256:a4cc73a6ae0a6751b76e69cece9d0311f054da9b22df6a12f2c53111735657c8",
"sha256:a9f8e33747b1332db11cf7fcf4a9512bef9748cb5eb4d3f7fbc8c30d75dc6ffc",
"sha256:ace960769d60037ca9625b4c578a6f28a14301bd2a1ff13bb00e824ac9f73e55",
"sha256:ae721bcc8e69846af00b7a77a220614d9b2ec57d25017a6bbde3a99473e41ce8",
"sha256:aea01f40995fa0945c020228ab919b8dfc93fc8a9f2d3d705ab5b793f32d9e99",
"sha256:b499caef4bca9cbd0bd23cd3386f5113ee7378094a3cb613a2fa543260fe9506",
"sha256:b89504227a5311610e4be16071465885a0a3d6b0e82e305ef46d9b064ce5fb72",
"sha256:bd66b4865c8b853b8cca7379afb692fc7f52cf898786537dfb5e5e2d64f0a47f",
"sha256:bfcd3acc1a81f106abac6afd42327d2cf1e77ec905ae11dc1d9142a006a496b6",
"sha256:c24ba103ecf45861e2e1f933d40b2d93f5d52d8228870c3e7bf1299cd1cb8ff1",
"sha256:c348abc5924caa02a62896300e32ea80a81521f91d6db2e853e6b1994017c9f6",
"sha256:c53f97032b87a406044a1c33d1e9290cc38b117a8062e8a8b285175d7e2f99c9",
"sha256:c7cd4b1015d2f60dfe539ee6c95bc968d5d5fad92ab01bb5501a77393da4f596",
"sha256:c86dc2068f1c5ca2065aca34f257bbf4f78caf566eb230f692ad347da191f0a1",
"sha256:c8c5c8e1bac05ef3c23722e591ef4f688f528235e2480f157a9cfe0a19081375",
"sha256:ca36151289a15b39d8d683fd8b7abbe26fc50be311066c5f8dcf3cb8cee107ab",
"sha256:cc8821a03bcfb36e4e4705316f6b66af28450357af8a575dc8f4b09bf02a3dee",
"sha256:cccc18077acd34c8072578394ec79563664b1c205f7a86a62e94fafc7b59001f",
"sha256:d2244d8ab24374bed366f9ff206e2619345f9cd7fe79aad5225f53faac28b6b1",
"sha256:d4c22992e24f12de340ca5f824121a5b3e1a37ad4360b4e1aaf15e9d1c42582d",
"sha256:dd24c4d256558429aeeb8d6c24ebad4e982ac52c50bc3670ae8646c181263965",
"sha256:e413352a921f5ad5d66f9e2869b977e88d5103fc528b6deb8423028a2befd842",
"sha256:ee06405ea2e67366a661ed313e14cf2a86e84142a3462852eb96348f7219cee3",
"sha256:f83eca8cbfd168e424dfa3b3b5c955d6c281e8fc09feb9d870886ff8d03683c7",
"sha256:fb915101dfbf318486364ce85662bb7b020840f68138014972c08331458d41f3",
"sha256:ffc02b159b65c05f2ed9ec176b715b66918a674bd4daed48a9a7a590dd4be1aa",
"sha256:ffc5ae23ada6515f31604f700009e2df90b091b67d463a8401c1d8a37f76c1d7"
"sha256:0701bc3cfcb9164d04a14b149fd74be7347a530ad3bbf15ab2c678a2cd3dd9a2",
"sha256:0a34631031a8f05657e8e90903e656959234f3a04552259458aac0b0f9ae6fd9",
"sha256:0af68c55afbd5f07986df82831c7bff04846928ea8d1fd7f30052638788bc9b5",
"sha256:0c9e74d766f2818bb95f84c25be4dea09841ac0f734d1966f415e4edfc4ef1c3",
"sha256:0f3c1e2ab208db911594ae5b4f79addeb3501604a165019dd221c0bdcabe4db8",
"sha256:0fdfe3e2a29e4db3659dbd5bbf04560cea53dd9610273917799f1cde46aa725e",
"sha256:1009ee0c7739c08a0cd59de430d6de452a55e42d6b522de7aa15e6f67db0b8e1",
"sha256:1234d4ef35db82f5446dca8e35a7da7964d02c127b095e172e54397fb6a6c256",
"sha256:16b6c1b3e57799b9d38427dda63edcbe4926352c47cf88588c0be4ace18dac85",
"sha256:2034693ad3097d5355bfdacfffcbd3ef5694f9718ab7f29c29689a9eae841880",
"sha256:21c1fa28a6a7e3cbdc171c694398b6df4744613ce9b36b1a498e816787e28123",
"sha256:229cf1d3ca6c1804400b0a9790dc66528e08a6a1feec0d5040e8b9eb14422375",
"sha256:27ccee0071a0e75d22cb35849b1db43f2ecd3e161041ac1ee9d2352ddf72f065",
"sha256:363c6f671b761efcb30608d24925a382497c12c506b51661883c3e22337265ed",
"sha256:39c1fec2c11dc8d89bba6b2bf1556af381611a173ac2b511cf7231622058af41",
"sha256:3b1ac0d3e594bf121308112697cf4b32be538fb1444468fb0a6ae4feebc83411",
"sha256:3be571a8b5afed347da347bfcf27ba12b069d9d7f42cb8c7028b5e98bbb12597",
"sha256:3c714d2fc58b5ca3e285461a4cc0c9a66bd0e24c5da9911e30158286c9b5be7f",
"sha256:3d00075aa65772e7ce9e990cab3ff1de702aa09be3940d1dc88d5abf1ab8a09c",
"sha256:3e90baa811a5d73f3ca0bcbf32064d663ed81318ab225ee4f427ad4e26e5aff3",
"sha256:47819cea040f31d670cc8d324bb6435c6f133b8c7a19ec3d61634e62f8d8f9eb",
"sha256:47b099e1f4fbc95b701b6e85768e1fcdaf1630f3cbe4765fa216596f12310e2e",
"sha256:4a9fac8e469d04ce6c25bb2610dc535235bd4aa14996b4e6dbebf5e007eba5ee",
"sha256:4b826973a4a2ae47ba357e4e82fa44a463b8f168e1ca775ac64521442b19e87f",
"sha256:4c2529b320eb9e35af0fa3016c187dffb84a3ecc572bcee7c3ce302bfeba52bf",
"sha256:54479983bd5fb469c38f2f5c7e3a24f9a4e70594cd68cd1fa6b9340dadaff7cf",
"sha256:558d023b3df0bffe50a04e710bc87742de35060580a293c2a984299ed83bc4e4",
"sha256:5756779642579d902eed757b21b0164cd6fe338506a8083eb58af5c372e39d9a",
"sha256:592f1a9fe869c778694f0aa806ba0374e97648ab57936f092fd9d87f8bc03665",
"sha256:595b6c3969023ecf9041b2936ac3827e4623bfa3ccf007575f04c5a6aa318c22",
"sha256:5a939de6b7b4e18ca683218320fc67ea886038265fd1ed30173f5ce3f8e85675",
"sha256:5d54b09eba2bada6011aea5375542a157637b91029687eb4fdb2dab11059c1b4",
"sha256:5df592cd503496351d6dc14f7cdad49f268d8e618f80dce0cd5a36b93c3fc08d",
"sha256:5f4c04ead5aed67c8a1a20491d54cdfba5884507a48dd798ecaf13c74c4489f5",
"sha256:64dee438fed052b52e4f98f76c5790513235efaa1ef7f3f2192c392cd7c91b65",
"sha256:66dd88c918e3287efc22409d426c8f729688d89a0c587c88971a0faa2c2f3792",
"sha256:678999709e68425ae2593acf2e3ebcbcf2e69885a5ee78f9eb80e6e371f1bf57",
"sha256:67f2b6de947f8c757db2db9c71527933ad0019737ec374a8a6be9a956786aaf9",
"sha256:693f0192126df6c2327cce3baa7c06f2a117575e32ab2308f7f8216c29d9e2e3",
"sha256:746ee8dba912cd6fc889a8147168991d50ed70447bf18bcda7039f7d2e3d9151",
"sha256:756c56e867a90fb00177d530dca4b097dd753cde348448a1012ed6c5131f8b7d",
"sha256:76d1f20b1c7a2fa82367e04982e708723ba0e7b8d43aa643d3dcd404d74f1475",
"sha256:7f493881579c90fc262d9cdbaa05a6b54b3811c2f300766748db79f098db9940",
"sha256:823c248b690b2fd9303ba00c4f66cd5e2d8c3ba4aa968b2779be9532a4dad431",
"sha256:82544de02076bafba038ce055ee6412d68da13ab47f0c60cab827346de828dee",
"sha256:8dd8327c795b3e3f219760fa603dcae1dcc148172290a8ab15158cf85a953413",
"sha256:8fdc51055e6ff4adeb88d58a11042ec9a5eae317a0a53d12c062c8a8865909e8",
"sha256:a625e06551975f4b7ea7102bc43895b90742746797e2e14b70ed61c43a90f09b",
"sha256:abdc0c6c8c648b4805c5eacd131910d2a7f6455dfd3becab248ef108e89ab16a",
"sha256:ac017dd64572e5c3bd01939121e4d16cf30e5d7e110a119399cf3133b63ad054",
"sha256:ac1e5c9054fe23226fb11e05a6e630837f074174c4c2f0fe442996112a6de4fb",
"sha256:ac60e3b188ec7574cb761b08d50fcedf9d77f1530352db4eef1707fe9dee7205",
"sha256:b359ed09954d7c18bbc1680f380c7301f92c60bf924171629c5db97febb12f04",
"sha256:b7643a03db5c95c799b89b31c036d5f27eeb4d259c798e878d6937d71832b1e4",
"sha256:ba9e56e8ceeeedb2e080147ba85ffcd5cd0711b89576b83784d8605a7df455fa",
"sha256:c338ffa0520bdb12fbc527265235639fb76e7bc7faafbb93f6ba80d9c06578a9",
"sha256:cad21560da69f4ce7658ca2cb83138fb4cf695a2ba3e475e0559e05991aa8122",
"sha256:d08eb4c2b7d6c41da6ca0600c077e93f5adcfd979cd777d747e9ee624556da4b",
"sha256:d50fd1ee42388dcfb2b3676132c78116490976f1300da28eb629272d5d93e905",
"sha256:d591f8de75824cbb7acad4e05d2d710484f15f29d4a915092675ad3456f11770",
"sha256:d5f6b181bb38171a8ad1d6aa58a67a6aa9d4b38d0f8c5f496b9e42561dfc62fe",
"sha256:d63efaa0cd96cf0c5fe4d581521d9fa87744540d4bc999ae6e08595a1014b45b",
"sha256:d99e5546bf73dbad5bf3547174cd6cb8ba7273062a23808ffea025ecb1cf8562",
"sha256:e09473f095a819042ecb2ab9465aee615bd9c2028e4ef7d933600a8401c79561",
"sha256:e8b56bdcdb4505c8078cb6c7157d9811a85790f2f2b3632c7d1462ab5783d215",
"sha256:ee443ef070bb3b6ed74514f5efaa37a252af57c90eb33b956d35c8e9c10a1931",
"sha256:f29d80eb9a9263b8d109135351caf568cc3f80b9928bccde535c235de55c22d9",
"sha256:f7a866fbc1e97b5c617ee4116daaa09b722101d4a3c170c787450ba409f9736f",
"sha256:fcd5cf9e305d7b8338754470cf69cf81f420459dbae8a3b40cee57417f4614a7"
],
"markers": "python_version >= '3.9'",
"version": "==15.0"
"version": "==15.0.1"
},
"werkzeug": {
"hashes": [
@ -4092,7 +4124,11 @@
"pytest": {
"hashes": [
"sha256:249b1b0864530ba251b7438274c4d251c58d868edaaec8762893ad4a0d71c36c",
"sha256:50fb9cbe836c3f20f0dfa99c565201fb75dc54c8d76373cd1bde06b06657bdb6"
"sha256:42ed2f917ded90ceb752dbe2ecb48c436c2a70d38bc16018c2d11da6426a18b6",
"sha256:50fb9cbe836c3f20f0dfa99c565201fb75dc54c8d76373cd1bde06b06657bdb6",
"sha256:6c30d4c4409c5d227ef936678b72c56b6fbaed28a6ee4eafd2c93ed9a24c65af",
"sha256:b5baeee6fb27cbca444fc1bab2ee7e1934f93daa50a4d475a6d0f819c263e573",
"sha256:efc82dc5e6f2f41ae5acb9eabdf2ced192f336664c436b24a7db2c6aaafe4efd"
],
"index": "pypi",
"markers": "python_version >= '3.8'",

View File

@ -4,4 +4,6 @@ from sentence_transformers import SentenceTransformer
EMBEDDING_MODEL = config("EMBEDDING_MODEL", cast=str, default="paraphrase-multilingual-mpnet-base-v2")
# Initialize embedding model
model = SentenceTransformer(EMBEDDING_MODEL)
model = SentenceTransformer(EMBEDDING_MODEL)
model.save("./transformer_model/paraphrase-multilingual-mpnet-base-v2")

View File

@ -1,14 +1,14 @@
streamlit>=1.28
langchain>=0.0.217
openai>=1.2
duckduckgo-search
anthropic>=0.3.0
trubrics>=1.4.3
streamlit-feedback
langchain-community
chromadb
python-decouple
langchain_google_genai
langchain-deepseek
sentence_transformers
watchdog
streamlit==1.28.0
langchain
openai==1.65.4
duckduckgo_search==7.5.0
anthropic==0.49.0
trubrics==1.8.3
streamlit-feedback==0.1.4
langchain-community==0.3.19
chromadb==0.6.3
python-decouple==3.8
langchain-google-genai==2.0.10
langchain-deepseek==0.1.2
sentence-transformers==3.4.1
watchdog==6.0.0