mirror of
https://github.com/RYDE-WORK/MiniCPM.git
synced 2026-01-19 21:03:39 +08:00
236 lines
7.6 KiB
Python
236 lines
7.6 KiB
Python
"""
|
||
由于autogptq已经不更新很久了,使用gptq量化前,请先安装我们的autogptq分支,否则代码无法正常运行。
|
||
|
||
‘’‘bash
|
||
git clone https://github.com/LDLINGLINGLING/AutoGPTQ/tree/minicpm_gptq
|
||
cd Autogptq
|
||
pip install e .
|
||
‘’‘
|
||
|
||
"""
|
||
|
||
|
||
|
||
|
||
|
||
import json
|
||
import random
|
||
import time
|
||
from argparse import ArgumentParser
|
||
import torch
|
||
from datasets import Dataset
|
||
from transformers import AutoTokenizer
|
||
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
||
|
||
import os
|
||
import shutil
|
||
|
||
def copy_missing_files(src_path, dst_path):
|
||
src_files=os.listdir(src_path)
|
||
dst_files=os.listdir(dst_path)
|
||
for src_file in src_files:
|
||
if src_file not in dst_files and src_file.endswith(('.bin', '.json'))!=True and src_file.startswith('.')!=True:
|
||
src_file_path = os.path.join(src_path, src_file)
|
||
dst_file_path = os.path.join(dst_path, src_file)
|
||
shutil.copy2(src_file_path, dst_file_path)
|
||
|
||
def load_data(data_path, tokenizer, n_samples):
|
||
|
||
with open(data_path, "r", encoding="utf-8") as f:
|
||
raw_data = json.load(f)
|
||
|
||
raw_data = random.sample(raw_data, k=min(n_samples, len(raw_data)))
|
||
def dummy_gen():
|
||
return raw_data
|
||
|
||
def tokenize(examples):
|
||
instructions = examples["instruction"]
|
||
inputs = examples["input"]
|
||
outputs = examples["output"]
|
||
|
||
prompts = []
|
||
texts = []
|
||
input_ids = []
|
||
attention_mask = []
|
||
for istr, inp, opt in zip(instructions, inputs, outputs):
|
||
if inp:
|
||
prompt = f"<AI>:\n{istr+inp}<AI>:\n"
|
||
text = "<s>" + prompt + opt + "</s>"
|
||
else:
|
||
prompt = f"<USER>\n{istr}\n<AI>:\n"
|
||
text = "<s>" + prompt + opt+ "</s>"
|
||
if len(tokenizer(prompt)["input_ids"]) >= tokenizer.model_max_length:
|
||
continue
|
||
|
||
tokenized_data = tokenizer(text)
|
||
|
||
input_ids.append(tokenized_data["input_ids"][: tokenizer.model_max_length])
|
||
attention_mask.append(tokenized_data["attention_mask"][: tokenizer.model_max_length])
|
||
prompts.append(prompt)
|
||
texts.append(text)
|
||
|
||
return {
|
||
"input_ids": input_ids,
|
||
"attention_mask": attention_mask,
|
||
"prompt": prompts,
|
||
}
|
||
|
||
dataset = Dataset.from_generator(dummy_gen)
|
||
|
||
dataset = dataset.map(
|
||
tokenize,
|
||
batched=True,
|
||
batch_size=len(dataset),
|
||
num_proc=1,
|
||
keep_in_memory=True,
|
||
load_from_cache_file=False,
|
||
remove_columns=["instruction", "input"],
|
||
)
|
||
|
||
dataset = dataset.to_list()
|
||
|
||
for sample in dataset:
|
||
sample["input_ids"] = torch.LongTensor(sample["input_ids"])
|
||
sample["attention_mask"] = torch.LongTensor(sample["attention_mask"])
|
||
|
||
return dataset
|
||
|
||
|
||
def main():
|
||
parser = ArgumentParser()
|
||
parser.add_argument("--pretrained_model_dir", type=str,default='/root/ld/ld_model_pretrained/MiniCPM-1B-sft-bf16')
|
||
parser.add_argument("--quantized_model_dir", type=str, default='/root/ld/ld_project/AutoGPTQ/examples/quantization/minicpm_1b_4bit')
|
||
parser.add_argument("--bits", type=int, default=4, choices=[2, 3, 4])#do not use 8 bit
|
||
parser.add_argument(
|
||
"--group_size",
|
||
type=int,
|
||
default=128,
|
||
help="group size, -1 means no grouping or full rank",
|
||
)
|
||
parser.add_argument("--desc_act", action="store_true", default=True,help="whether to quantize with desc_act")
|
||
parser.add_argument(
|
||
"--num_samples",
|
||
type=int,
|
||
default=128,
|
||
help="how many samples will be used to quantize model",
|
||
)
|
||
parser.add_argument(
|
||
"--save_and_reload",
|
||
action="store_true",
|
||
default=True,
|
||
help="whether save quantized model to disk and reload back",
|
||
)
|
||
parser.add_argument("--fast_tokenizer", action="store_true", help="whether use fast tokenizer")
|
||
parser.add_argument(
|
||
"--use_triton",
|
||
action="store_true",
|
||
help="whether use triton to speedup at inference",
|
||
)
|
||
parser.add_argument(
|
||
"--per_gpu_max_memory",
|
||
type=int,
|
||
default=None,
|
||
help="max memory used to load model per gpu",
|
||
)
|
||
parser.add_argument(
|
||
"--cpu_max_memory",
|
||
type=int,
|
||
default=None,
|
||
help="max memory used to offload model to cpu",
|
||
)
|
||
parser.add_argument(
|
||
"--quant_batch_size",
|
||
type=int,
|
||
default=8,
|
||
help="examples batch size for quantization",
|
||
)
|
||
parser.add_argument(
|
||
"--trust_remote_code",
|
||
default=True,
|
||
action="store_true",
|
||
help="whether to trust remote code when loading model",
|
||
)
|
||
parser.add_argument(
|
||
"--quant_data",
|
||
default='quantize_data/alpaca_data_cleaned.json',
|
||
help="the quant data path",
|
||
)
|
||
|
||
args = parser.parse_args()
|
||
|
||
max_memory = {}
|
||
if args.per_gpu_max_memory is not None and args.per_gpu_max_memory > 0:
|
||
if torch.cuda.is_available():
|
||
max_memory.update({i: f"{args.per_gpu_max_memory}GIB" for i in range(torch.cuda.device_count())})
|
||
if args.cpu_max_memory is not None and args.cpu_max_memory > 0 and max_memory:
|
||
max_memory["cpu"] = f"{args.cpu_max_memory}GIB"
|
||
if not max_memory:
|
||
max_memory = None
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained(
|
||
args.pretrained_model_dir,
|
||
use_fast=args.fast_tokenizer,
|
||
trust_remote_code=args.trust_remote_code,
|
||
)
|
||
model = AutoGPTQForCausalLM.from_pretrained(
|
||
args.pretrained_model_dir,
|
||
quantize_config=BaseQuantizeConfig(bits=args.bits, group_size=args.group_size, desc_act=args.desc_act),
|
||
max_memory=max_memory,
|
||
trust_remote_code=args.trust_remote_code,
|
||
)
|
||
|
||
examples = load_data(args.quant_data, tokenizer, args.num_samples)
|
||
examples_for_quant = [
|
||
{"input_ids": example["input_ids"], "attention_mask": example["attention_mask"]} for example in examples
|
||
]
|
||
|
||
start = time.time()
|
||
model.quantize(
|
||
examples_for_quant,
|
||
batch_size=args.quant_batch_size,
|
||
use_triton=args.use_triton,
|
||
autotune_warmup_after_quantized=args.use_triton,
|
||
)
|
||
end = time.time()
|
||
print(f"quantization took: {end - start: .4f}s")
|
||
|
||
if not args.quantized_model_dir:
|
||
args.quantized_model_dir = args.pretrained_model_dir
|
||
|
||
if args.save_and_reload:
|
||
model.save_quantized(args.quantized_model_dir)
|
||
tokenizer.save_pretrained(args.quantized_model_dir)
|
||
copy_missing_files(args.pretrained_model_dir,args.quantized_model_dir)
|
||
del model
|
||
if torch.cuda.is_available():
|
||
torch.cuda.empty_cache()
|
||
model = AutoGPTQForCausalLM.from_quantized(
|
||
args.quantized_model_dir,
|
||
device="cuda:0",
|
||
use_triton=args.use_triton,
|
||
max_memory=max_memory,
|
||
inject_fused_mlp=True,
|
||
inject_fused_attention=True,
|
||
trust_remote_code=args.trust_remote_code,
|
||
)
|
||
|
||
pipeline_init_kwargs = {"model": model, "tokenizer": tokenizer}
|
||
if not max_memory:
|
||
pipeline_init_kwargs["device"] = "cuda:0"
|
||
for example in random.sample(examples, k=min(4, len(examples))):
|
||
print(f"prompt: {example['prompt']}")
|
||
print("-" * 42)
|
||
print(f"golden: {example['output']}")
|
||
print("-" * 42)
|
||
start = time.time()
|
||
print(tokenizer.decode(model.generate(**tokenizer("{}".format(example['prompt']), return_tensors="pt").to(model.device),max_new_tokens=100)[0]))
|
||
|
||
if __name__ == "__main__":
|
||
import logging
|
||
|
||
logging.basicConfig(
|
||
format="%(asctime)s %(levelname)s [%(name)s] %(message)s",
|
||
level=logging.INFO,
|
||
datefmt="%Y-%m-%d %H:%M:%S",
|
||
)
|
||
main() |