huangyuxiang03 4d32b410ff Add: vllm
2024-02-01 10:54:48 +08:00

60 lines
1.6 KiB
Python

import argparse
from vllm import LLM, SamplingParams
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="")
args = parser.parse_args()
# Sample prompts.
prompts = [
"北京烤鸭真好吃,正好有一家北京烤鸭店,我想去吃北京烤鸭",
"def reverse_list(list):",
"Beijing is the capital of",
"1 + 1 = ",
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
'''0123456789'''*810 + " what is next number?",
"您好,三加二等于多少?",
"我是",
""
]
params_dict = {
"n": 1,
"best_of": None,
"presence_penalty": 0.0,
"frequency_penalty": 0.0,
"temperature": 1,
"top_p": 0.9,
"top_k": -1,
"use_beam_search": False,
"length_penalty": 1.0,
"early_stopping": False,
"stop": None,
"stop_token_ids": None,
"ignore_eos": False,
"max_tokens": 100,
"logprobs": None,
"prompt_logprobs": None,
"skip_special_tokens": True,
}
# Create a sampling params object.
sampling_params = SamplingParams(**params_dict)
# Create an LLM.
llm = LLM(model=args.model_path, tensor_parallel_size=1, dtype='bfloat16')
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")