mirror of
https://github.com/RYDE-WORK/MiniCPM.git
synced 2026-01-19 12:53:36 +08:00
743 lines
23 KiB
Python
743 lines
23 KiB
Python
# Copyright © 2023-2024 Apple Inc.
|
||
"""
|
||
This script demonstrates how to fine-tune a LoRA model on AdvertiseGen dataset in mlx.
|
||
Using Code is modified from https://github.com/ml-explore/mlx-examples.
|
||
Using Model with https://huggingface.co/mlx-community/MiniCPM-2B-sft-bf16-llama-format-mlx
|
||
|
||
Use this Code with command:
|
||
|
||
train:
|
||
首先处理数据,运行data_processing.ipynb
|
||
python mlx_finetune.py --model MiniCPM-2B-sft-bf16-llama-format-mlx --data data/mlx_AdvertiseGen --train --seed 2024 --iters 500
|
||
|
||
输出结果如下:
|
||
|
||
Training
|
||
Iter 1: Val loss 4.015, Val took 1067.669s
|
||
Iter 2: Val loss 4.001, Val took 1061.649s
|
||
...
|
||
|
||
训练结束之后,文件夹下会有 adapters.npz 文件,用于后续的测试。接着,运行测试命令
|
||
|
||
test:
|
||
python mlx_finetune.py --model MiniCPM-2B-sft-bf16-llama-format-mlx --data data/mlx_AdvertiseGen --test --seed 2024
|
||
|
||
输出结果如下:
|
||
|
||
Testing
|
||
Test loss 3.977, Test ppl 53.350.
|
||
|
||
|
||
"""
|
||
import argparse
|
||
import json
|
||
import time
|
||
from pathlib import Path
|
||
from typing import Generator
|
||
import transformers
|
||
import numpy as np
|
||
from huggingface_hub import snapshot_download
|
||
import glob
|
||
import inspect
|
||
import math
|
||
from dataclasses import dataclass
|
||
from typing import Dict, Optional, Tuple, Union
|
||
|
||
from mlx.utils import tree_flatten, tree_unflatten
|
||
import mlx.optimizers as optim
|
||
import mlx.core as mx
|
||
import mlx.nn as nn
|
||
|
||
|
||
@dataclass
|
||
class ModelArgs:
|
||
hidden_size: int
|
||
num_hidden_layers: int
|
||
intermediate_size: int
|
||
num_attention_heads: int
|
||
rms_norm_eps: float
|
||
vocab_size: int
|
||
num_key_value_heads: int = None
|
||
rope_theta: float = 10000
|
||
rope_traditional: bool = False
|
||
model_type: str = None
|
||
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
||
|
||
def __post_init__(self):
|
||
if self.num_key_value_heads is None:
|
||
self.num_key_value_heads = self.num_attention_heads
|
||
|
||
if self.rope_scaling:
|
||
required_keys = {"factor", "type"}
|
||
if not all(key in self.rope_scaling for key in required_keys):
|
||
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
||
|
||
if self.rope_scaling["type"] != "linear":
|
||
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
|
||
|
||
@classmethod
|
||
def from_dict(cls, params):
|
||
return cls(
|
||
**{
|
||
k: v
|
||
for k, v in params.items()
|
||
if k in inspect.signature(cls).parameters
|
||
}
|
||
)
|
||
|
||
|
||
class LoRALinear(nn.Module):
|
||
@staticmethod
|
||
def from_linear(linear: nn.Linear, rank: int = 8):
|
||
# TODO remove when input_dims and output_dims are attributes
|
||
# on linear and quantized linear
|
||
output_dims, input_dims = linear.weight.shape
|
||
if isinstance(linear, nn.QuantizedLinear):
|
||
input_dims *= 32 // linear.bits
|
||
lora_lin = LoRALinear(input_dims, output_dims, rank)
|
||
lora_lin.linear = linear
|
||
return lora_lin
|
||
|
||
def to_linear(self):
|
||
linear = self.linear
|
||
bias = "bias" in linear
|
||
weight = linear.weight
|
||
is_quantized = isinstance(linear, nn.QuantizedLinear)
|
||
|
||
# Use the same type as the linear weight if not quantized
|
||
dtype = weight.dtype
|
||
|
||
if is_quantized:
|
||
dtype = mx.float16
|
||
weight = mx.dequantize(
|
||
weight,
|
||
linear.scales,
|
||
linear.biases,
|
||
linear.group_size,
|
||
linear.bits,
|
||
)
|
||
output_dims, input_dims = weight.shape
|
||
fused_linear = nn.Linear(input_dims, output_dims, bias=bias)
|
||
|
||
lora_b = (self.scale * self.lora_b.T).astype(dtype)
|
||
lora_a = self.lora_a.T.astype(dtype)
|
||
fused_linear.weight = weight + lora_b @ lora_a
|
||
if bias:
|
||
fused_linear.bias = linear.bias
|
||
|
||
if is_quantized:
|
||
fused_linear = nn.QuantizedLinear.from_linear(
|
||
fused_linear,
|
||
linear.group_size,
|
||
linear.bits,
|
||
)
|
||
|
||
return fused_linear
|
||
|
||
def __init__(
|
||
self,
|
||
input_dims: int,
|
||
output_dims: int,
|
||
lora_rank: int = 8,
|
||
bias: bool = False,
|
||
scale: float = 20.0,
|
||
):
|
||
super().__init__()
|
||
|
||
# Regular linear layer weights
|
||
self.linear = nn.Linear(input_dims, output_dims, bias=bias)
|
||
|
||
# Scale for low-rank update
|
||
self.scale = scale
|
||
|
||
# Low rank lora weights
|
||
scale = 1 / math.sqrt(input_dims)
|
||
self.lora_a = mx.random.uniform(
|
||
low=-scale,
|
||
high=scale,
|
||
shape=(input_dims, lora_rank),
|
||
)
|
||
self.lora_b = mx.zeros(shape=(lora_rank, output_dims))
|
||
|
||
def __call__(self, x):
|
||
dtype = self.linear.weight.dtype
|
||
if isinstance(self.linear, nn.QuantizedLinear):
|
||
dtype = self.linear.scales.dtype
|
||
y = self.linear(x.astype(dtype))
|
||
z = (x @ self.lora_a) @ self.lora_b
|
||
return y + self.scale * z
|
||
|
||
|
||
class Attention(nn.Module):
|
||
def __init__(self, args: ModelArgs):
|
||
super().__init__()
|
||
|
||
dim = args.hidden_size
|
||
self.n_heads = n_heads = args.num_attention_heads
|
||
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||
|
||
self.repeats = n_heads // n_kv_heads
|
||
|
||
head_dim = args.hidden_size // n_heads
|
||
self.scale = head_dim ** -0.5
|
||
|
||
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
|
||
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
||
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
||
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
||
rope_scale = (
|
||
1 / args.rope_scaling["factor"]
|
||
if args.rope_scaling is not None and args.rope_scaling["type"] == "linear"
|
||
else 1
|
||
)
|
||
self.rope = nn.RoPE(
|
||
head_dim,
|
||
traditional=args.rope_traditional,
|
||
base=args.rope_theta,
|
||
scale=rope_scale,
|
||
)
|
||
|
||
def __call__(
|
||
self,
|
||
x: mx.array,
|
||
mask: Optional[mx.array] = None,
|
||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||
) -> mx.array:
|
||
B, L, D = x.shape
|
||
|
||
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||
|
||
# Prepare the queries, keys and values for the attention computation
|
||
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||
|
||
if cache is not None:
|
||
key_cache, value_cache = cache
|
||
queries = self.rope(queries, offset=key_cache.shape[2])
|
||
keys = self.rope(keys, offset=key_cache.shape[2])
|
||
keys = mx.concatenate([key_cache, keys], axis=2)
|
||
values = mx.concatenate([value_cache, values], axis=2)
|
||
else:
|
||
queries = self.rope(queries)
|
||
keys = self.rope(keys)
|
||
|
||
output = mx.fast.scaled_dot_product_attention(
|
||
queries, keys, values, scale=self.scale, mask=mask
|
||
)
|
||
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||
return self.o_proj(output), (keys, values)
|
||
|
||
|
||
class MLP(nn.Module):
|
||
def __init__(self, dim, hidden_dim):
|
||
super().__init__()
|
||
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
||
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
||
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
||
|
||
def __call__(self, x) -> mx.array:
|
||
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
||
|
||
|
||
class TransformerBlock(nn.Module):
|
||
def __init__(self, args: ModelArgs):
|
||
super().__init__()
|
||
self.num_attention_heads = args.num_attention_heads
|
||
self.hidden_size = args.hidden_size
|
||
self.self_attn = Attention(args)
|
||
self.mlp = MLP(args.hidden_size, args.intermediate_size)
|
||
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||
self.post_attention_layernorm = nn.RMSNorm(
|
||
args.hidden_size, eps=args.rms_norm_eps
|
||
)
|
||
self.args = args
|
||
|
||
def __call__(
|
||
self,
|
||
x: mx.array,
|
||
mask: Optional[mx.array] = None,
|
||
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||
) -> mx.array:
|
||
r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
|
||
h = x + r
|
||
r = self.mlp(self.post_attention_layernorm(h))
|
||
out = h + r
|
||
return out, cache
|
||
|
||
|
||
class LlamaModel(nn.Module):
|
||
def __init__(self, args: ModelArgs):
|
||
super().__init__()
|
||
self.args = args
|
||
self.vocab_size = args.vocab_size
|
||
self.num_hidden_layers = args.num_hidden_layers
|
||
assert self.vocab_size > 0
|
||
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
||
self.layers = [
|
||
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
|
||
]
|
||
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||
|
||
def __call__(
|
||
self,
|
||
inputs: mx.array,
|
||
cache=None,
|
||
):
|
||
h = self.embed_tokens(inputs)
|
||
|
||
mask = None
|
||
if h.shape[1] > 1:
|
||
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||
mask = mask.astype(h.dtype)
|
||
|
||
if cache is None:
|
||
cache = [None] * len(self.layers)
|
||
|
||
for e, layer in enumerate(self.layers):
|
||
h, cache[e] = layer(h, mask, cache[e])
|
||
|
||
return self.norm(h), cache
|
||
|
||
|
||
class Model(nn.Module):
|
||
def __init__(self, args: ModelArgs):
|
||
super().__init__()
|
||
self.model = LlamaModel(args)
|
||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||
|
||
def __call__(
|
||
self,
|
||
inputs: mx.array,
|
||
cache=None,
|
||
):
|
||
out, cache = self.model(inputs, cache)
|
||
return self.lm_head(out), cache
|
||
|
||
|
||
def build_parser():
|
||
parser = argparse.ArgumentParser(description="LoRA or QLoRA finetuning.")
|
||
parser.add_argument(
|
||
"--model",
|
||
default="/Users/liudan/Downloads/模型/llamaformat_minicpm",
|
||
help="The path to the local model directory or Hugging Face repo.",
|
||
)
|
||
# Generation args
|
||
parser.add_argument(
|
||
"--max-tokens",
|
||
"-m",
|
||
type=int,
|
||
default=100,
|
||
help="The maximum number of tokens to generate",
|
||
)
|
||
parser.add_argument(
|
||
"--temp", type=float, default=0.8, help="The sampling temperature"
|
||
)
|
||
parser.add_argument(
|
||
"--prompt",
|
||
"-p",
|
||
type=str,
|
||
help="The prompt for generation"
|
||
)
|
||
|
||
# Training args
|
||
parser.add_argument(
|
||
"--train",
|
||
action="store_true",
|
||
help="Do training",
|
||
)
|
||
parser.add_argument(
|
||
"--data",
|
||
type=str,
|
||
default="data/mlx_AdvertiseGen",
|
||
help="Directory with {train, valid, test}.json files",
|
||
)
|
||
parser.add_argument(
|
||
"--lora-layers",
|
||
type=int,
|
||
default=16,
|
||
help="Number of layers to fine-tune",
|
||
)
|
||
parser.add_argument("--batch-size", type=int, default=4, help="Minibatch size.")
|
||
parser.add_argument(
|
||
"--iters", type=int, default=1000, help="Iterations to train for."
|
||
)
|
||
parser.add_argument(
|
||
"--val-batches",
|
||
type=int,
|
||
default=25,
|
||
help="Number of validation batches, -1 uses the entire validation set.",
|
||
)
|
||
parser.add_argument(
|
||
"--learning-rate", type=float, default=1e-5, help="Adam learning rate."
|
||
)
|
||
parser.add_argument(
|
||
"--steps-per-report",
|
||
type=int,
|
||
default=10,
|
||
help="Number of training steps between loss reporting.",
|
||
)
|
||
parser.add_argument(
|
||
"--steps-per-eval",
|
||
type=int,
|
||
default=200,
|
||
help="Number of training steps between validations.",
|
||
)
|
||
parser.add_argument(
|
||
"--resume-adapter-file",
|
||
type=str,
|
||
default=None,
|
||
help="Load path to resume training with the given adapter weights.",
|
||
)
|
||
parser.add_argument(
|
||
"--adapter-file",
|
||
type=str,
|
||
default="adapters.npz",
|
||
help="Save/load path for the trained adapter weights.",
|
||
)
|
||
parser.add_argument(
|
||
"--save-every",
|
||
type=int,
|
||
default=100,
|
||
help="Save the model every N iterations.",
|
||
)
|
||
parser.add_argument(
|
||
"--test",
|
||
action="store_true",
|
||
help="Evaluate on the test set after training",
|
||
)
|
||
parser.add_argument(
|
||
"--test-batches",
|
||
type=int,
|
||
default=500,
|
||
help="Number of test set batches, -1 uses the entire test set.",
|
||
)
|
||
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
||
return parser
|
||
|
||
|
||
class ConversationDataset:
|
||
|
||
def __init__(self, path: Path):
|
||
with open(path, "r") as fid:
|
||
self._data = [json.loads(l) for l in fid]
|
||
|
||
def __getitem__(self, idx: int):
|
||
entry = self._data[idx]
|
||
content = entry.get("input", "")
|
||
summary = entry.get("output", "")
|
||
prompt = entry.get("prompt", "")
|
||
return prompt, content, summary
|
||
|
||
def __len__(self):
|
||
return len(self._data)
|
||
|
||
|
||
def load(args):
|
||
def load_and_check(name):
|
||
dataset_path = Path(args.data) / f"{name}.json"
|
||
try:
|
||
return ConversationDataset(dataset_path)
|
||
except Exception as e:
|
||
print(f"Unable to build dataset {dataset_path} ({e})")
|
||
raise
|
||
|
||
names = ("train", "dev", "dev")
|
||
train, valid, test = (load_and_check(n) for n in names)
|
||
|
||
if args.train and len(train) == 0:
|
||
raise ValueError(
|
||
"Training set not found or empty. Must provide training set for fine-tuning."
|
||
)
|
||
if args.train and len(valid) == 0:
|
||
raise ValueError(
|
||
"Validation set not found or empty. Must provide validation set for fine-tuning."
|
||
)
|
||
if args.test and len(test) == 0:
|
||
raise ValueError(
|
||
"Test set not found or empty. Must provide test set for evaluation."
|
||
)
|
||
return train, valid, test
|
||
|
||
|
||
def loss(model, inputs, targets, lengths):
|
||
logits, _ = model(inputs)
|
||
logits = logits.astype(mx.float32)
|
||
length_mask = mx.arange(inputs.shape[1])[None, :] < lengths[:, None]
|
||
ce = nn.losses.cross_entropy(logits, targets) * length_mask
|
||
ntoks = length_mask.sum()
|
||
ce = ce.sum() / ntoks
|
||
return ce, ntoks
|
||
|
||
|
||
def iterate_batches(dset, tokenizer, batch_size, train=False):
|
||
# Shuffle indices
|
||
while True:
|
||
indices = np.arange(len(dset))
|
||
if train:
|
||
indices = np.random.permutation(indices)
|
||
|
||
# Collect batches from dataset
|
||
for i in range(0, len(indices) - batch_size + 1, batch_size):
|
||
# Encode batch
|
||
batch_samples=[dset[indices[i + j]] for j in range(batch_size)]
|
||
batch_format_text=['<用户>{}<AI>{}'.format(i[1]+i[0],i[2]) for i in batch_samples]
|
||
batch = [tokenizer.encode(i)+[tokenizer.eos_token_id] for i in batch_format_text]
|
||
lengths = [len(x) for x in batch]
|
||
# Check if any sequence is longer than 2048 tokens
|
||
if max(lengths) > 2048:
|
||
print(
|
||
"[WARNING] Some sequences are longer than 2048 tokens. "
|
||
"Consider pre-splitting your data to save memory."
|
||
)
|
||
|
||
# Pad to the max length
|
||
batch_arr = np.zeros((batch_size, max(lengths)), np.int32)
|
||
|
||
for j in range(batch_size):
|
||
batch_arr[j, : lengths[j]] = batch[j]
|
||
batch = mx.array(batch_arr)
|
||
yield batch[:, :-1], batch[:, 1:], mx.array(lengths)
|
||
|
||
if not train:
|
||
break
|
||
|
||
|
||
def load_model(path_or_hf_repo: str):
|
||
# If the path exists, it will try to load model form it
|
||
# otherwise download and cache from the hf_repo and cache
|
||
model_path = Path(path_or_hf_repo)
|
||
if not model_path.exists():
|
||
model_path = Path(
|
||
snapshot_download(
|
||
repo_id=path_or_hf_repo,
|
||
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
|
||
)
|
||
)
|
||
|
||
with open(model_path / "config.json", "r") as f:
|
||
config = json.loads(f.read())
|
||
quantization = config.get("quantization", None)
|
||
|
||
weight_files = glob.glob(str(model_path / "*.safetensors"))
|
||
if len(weight_files) == 0:
|
||
raise FileNotFoundError("No safetensors found in {}".format(model_path))
|
||
|
||
weights = {}
|
||
for wf in weight_files:
|
||
weights.update(mx.load(wf).items())
|
||
|
||
model_args = ModelArgs.from_dict(config)
|
||
model = Model(model_args)
|
||
if quantization is not None:
|
||
nn.QuantizedLinear.quantize_module(
|
||
model,
|
||
**quantization,
|
||
linear_class_predicate=lambda m: isinstance(m, nn.Linear)
|
||
and m.weight.shape[0] != 8,
|
||
)
|
||
|
||
model.load_weights(list(weights.items()))
|
||
|
||
mx.eval(model.parameters())
|
||
tokenizer = transformers.AutoTokenizer.from_pretrained(model_path)
|
||
return model, tokenizer, config
|
||
|
||
|
||
def generate(
|
||
prompt: mx.array, model: nn.Module, temp: float = 0.0
|
||
) -> Generator[mx.array, None, None]:
|
||
"""
|
||
Generate text based on the given prompt and model.
|
||
|
||
Args:
|
||
prompt (mx.array): The input prompt.
|
||
model (nn.Module): The model to use for generation.
|
||
temp (float): The temperature for sampling. If temp is 0, use max sampling.
|
||
|
||
Yields:
|
||
mx.array: The generated text.
|
||
"""
|
||
|
||
def sample(logits: mx.array) -> mx.array:
|
||
return (
|
||
mx.argmax(logits, axis=-1)
|
||
if temp == 0
|
||
else mx.random.categorical(logits * (1 / temp))
|
||
)
|
||
|
||
y = prompt
|
||
cache = None
|
||
while True:
|
||
logits, cache = model(y[None], cache=cache)
|
||
logits = logits[:, -1, :]
|
||
y = sample(logits)
|
||
yield y
|
||
|
||
|
||
def evaluate(model, dataset, loss, tokenizer, batch_size, num_batches):
|
||
all_losses = []
|
||
ntokens = 0
|
||
for it, batch in zip(
|
||
range(num_batches),
|
||
iterate_batches(dataset, tokenizer, batch_size),
|
||
):
|
||
losses, toks = loss(model, *batch)
|
||
all_losses.append((losses * toks).item())
|
||
ntokens += toks.item()
|
||
|
||
return np.sum(all_losses) / ntokens
|
||
|
||
|
||
def train(model, train_set, val_set, optimizer, loss, tokenizer, args):
|
||
# Create value and grad function for loss
|
||
loss_value_and_grad = nn.value_and_grad(model, loss)
|
||
|
||
losses = []
|
||
n_tokens = 0
|
||
|
||
# Main training loop
|
||
start = time.perf_counter()
|
||
for it, batch in zip(
|
||
range(args.iters),
|
||
iterate_batches(train_set, tokenizer, args.batch_size, train=True),
|
||
):
|
||
# Forward and backward pass
|
||
(lvalue, toks), grad = loss_value_and_grad(model, *batch)
|
||
|
||
# Model update
|
||
optimizer.update(model, grad)
|
||
mx.eval(model.parameters(), optimizer.state, lvalue)
|
||
|
||
# Record loss
|
||
losses.append(lvalue.item())
|
||
n_tokens += toks.item()
|
||
|
||
if (it + 1) % args.steps_per_report == 0:
|
||
train_loss = np.mean(losses)
|
||
|
||
stop = time.perf_counter()
|
||
print(
|
||
f"Iter {it + 1}: Train loss {train_loss:.3f}, "
|
||
f"It/sec {args.steps_per_report / (stop - start):.3f}, "
|
||
f"Tokens/sec {float(n_tokens) / (stop - start):.3f}"
|
||
)
|
||
losses = []
|
||
n_tokens = 0
|
||
start = time.perf_counter()
|
||
|
||
# Report validation loss if needed
|
||
if it == 0 or (it + 1) % args.steps_per_eval == 0:
|
||
stop = time.perf_counter()
|
||
val_loss = evaluate(
|
||
model, val_set, loss, tokenizer, args.batch_size, args.val_batches
|
||
)
|
||
print(
|
||
f"Iter {it + 1}: "
|
||
f"Val loss {val_loss:.3f}, "
|
||
f"Val took {(time.perf_counter() - stop):.3f}s"
|
||
)
|
||
|
||
start = time.perf_counter()
|
||
|
||
# Save adapter weights if needed
|
||
if (it + 1) % args.save_every == 0:
|
||
mx.savez(
|
||
args.adapter_file, **dict(tree_flatten(model.trainable_parameters()))
|
||
)
|
||
print(f"Iter {it + 1}: Saved adapter weights to {args.adapter_file}.")
|
||
|
||
|
||
def generate_string(model, prompt, tokenizer, args):
|
||
print(prompt, end="", flush=True)
|
||
|
||
prompt = mx.array(tokenizer.encode(prompt))
|
||
|
||
tokens = []
|
||
skip = 0
|
||
for token, n in zip(
|
||
generate(prompt, model, args.temp),
|
||
range(args.max_tokens),
|
||
):
|
||
if token == tokenizer.eos_token_id:
|
||
break
|
||
|
||
tokens.append(token.item())
|
||
s = tokenizer.decode(tokens)
|
||
if len(s) - skip > 1:
|
||
print(s[skip:-1], end="", flush=True)
|
||
skip = len(s) - 1
|
||
print(tokenizer.decode(tokens)[skip:], flush=True)
|
||
print("=" * 10)
|
||
if len(tokens) == 0:
|
||
print("No tokens generated for this prompt")
|
||
return
|
||
|
||
|
||
if __name__ == "__main__":
|
||
parser = build_parser()
|
||
args = parser.parse_args()
|
||
|
||
np.random.seed(args.seed)
|
||
|
||
print("Loading pretrained model")
|
||
model, tokenizer, _ = load_model(args.model)
|
||
|
||
# Freeze all layers other than LORA linears
|
||
model.freeze()
|
||
for l in model.model.layers[len(model.model.layers) - args.lora_layers:]:
|
||
l.self_attn.q_proj = LoRALinear.from_linear(l.self_attn.q_proj)
|
||
l.self_attn.v_proj = LoRALinear.from_linear(l.self_attn.v_proj)
|
||
if hasattr(l, "block_sparse_moe"):
|
||
l.block_sparse_moe.gate = LoRALinear.from_linear(l.block_sparse_moe.gate)
|
||
|
||
p = sum(v.size for _, v in tree_flatten(model.parameters())) / 10 ** 6
|
||
print(f"Total parameters {p:.3f}M")
|
||
p = sum(v.size for _, v in tree_flatten(model.trainable_parameters())) / 10 ** 6
|
||
print(f"Trainable parameters {p:.3f}M")
|
||
|
||
print("Loading datasets")
|
||
train_set, valid_set, test_set = load(args)
|
||
|
||
# Resume training the given adapters.
|
||
if args.resume_adapter_file is not None:
|
||
print(f"Loading pretrained adapters from {args.resume_adapter_file}")
|
||
model.load_weights(args.resume_adapter_file, strict=False)
|
||
|
||
if args.train:
|
||
print("Training")
|
||
opt = optim.Adam(learning_rate=args.learning_rate)
|
||
|
||
# Train model
|
||
train(model, train_set, valid_set, opt, loss, tokenizer, args)
|
||
|
||
# Save adapter weights
|
||
mx.savez(args.adapter_file, **dict(tree_flatten(model.trainable_parameters())))
|
||
|
||
# Load the LoRA adapter weights which we assume should exist by this point
|
||
if not Path(args.adapter_file).is_file():
|
||
raise ValueError(
|
||
f"Adapter file {args.adapter_file} missing. "
|
||
"Use --train to learn and save the adapters.npz."
|
||
)
|
||
model.load_weights(args.adapter_file, strict=False)
|
||
|
||
if args.test:
|
||
print("Testing")
|
||
model.eval()
|
||
test_loss = evaluate(
|
||
model,
|
||
test_set,
|
||
loss,
|
||
tokenizer,
|
||
args.batch_size,
|
||
num_batches=args.test_batches,
|
||
)
|
||
test_ppl = math.exp(test_loss)
|
||
|
||
print(f"Test loss {test_loss:.3f}, Test ppl {test_ppl:.3f}.")
|
||
|
||
if args.prompt is not None:
|
||
print("Generating")
|
||
generate_string(model, args.prompt, tokenizer, args)
|