mirror of
https://github.com/RYDE-WORK/MiniCPM.git
synced 2026-01-19 12:53:36 +08:00
183 lines
7.0 KiB
Python
183 lines
7.0 KiB
Python
from typing import List
|
|
import argparse
|
|
import gradio as gr
|
|
from vllm import LLM, SamplingParams
|
|
import torch
|
|
from transformers import AutoTokenizer
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--model_path", type=str, default="openbmb/MiniCPM-1B-sft-bf16")
|
|
parser.add_argument("--torch_dtype", type=str, default="bfloat16", choices=["float32", "bfloat16"])
|
|
parser.add_argument("--server_name", type=str, default="127.0.0.1")
|
|
parser.add_argument("--server_port", type=int, default=7860)
|
|
parser.add_argument("--max_tokens", type=int, default=2048)
|
|
# for MiniCPM-1B and MiniCPM-2B model, max_tokens should be set to 2048
|
|
|
|
args = parser.parse_args()
|
|
|
|
# init model torch dtype
|
|
torch_dtype = args.torch_dtype
|
|
if torch_dtype == "" or torch_dtype == "bfloat16":
|
|
torch_dtype = torch.bfloat16
|
|
elif torch_dtype == "float32":
|
|
torch_dtype = torch.float32
|
|
elif torch_dtype == "float16":
|
|
torch_dtype = torch.float16
|
|
else:
|
|
raise ValueError(f"Invalid torch dtype: {torch_dtype}")
|
|
|
|
# init model and tokenizer
|
|
path = args.model_path
|
|
llm = LLM(
|
|
model=path,
|
|
tensor_parallel_size=1,
|
|
dtype=torch_dtype,
|
|
trust_remote_code=True,
|
|
gpu_memory_utilization=0.9,
|
|
max_model_len=args.max_tokens
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
|
|
|
|
server_name = args.server_name
|
|
server_port = args.server_port
|
|
|
|
|
|
def vllm_gen(dialog: List, top_p: float, temperature: float, max_dec_len: int):
|
|
"""generate model output with huggingface api
|
|
|
|
Args:
|
|
query (str): actual model input.
|
|
top_p (float): only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
|
|
temperature (float): Strictly positive float value used to modulate the logits distribution.
|
|
max_dec_len (int): The maximum numbers of tokens to generate.
|
|
|
|
Yields:
|
|
str: real-time generation results of hf model
|
|
"""
|
|
assert len(dialog) % 2 == 1
|
|
prompt = tokenizer.apply_chat_template(dialog, tokenize=False, add_generation_prompt=False)
|
|
token_ids = tokenizer.convert_tokens_to_ids(["<|im_end|>"])
|
|
params_dict = {
|
|
"n": 1,
|
|
"best_of": 1,
|
|
"presence_penalty": 1.0,
|
|
"frequency_penalty": 0.0,
|
|
"temperature": temperature,
|
|
"top_p": top_p,
|
|
"top_k": -1,
|
|
"use_beam_search": False,
|
|
"length_penalty": 1,
|
|
"early_stopping": False,
|
|
"stop": "<|im_end|>",
|
|
"stop_token_ids": token_ids,
|
|
"ignore_eos": False,
|
|
"max_tokens": max_dec_len,
|
|
"logprobs": None,
|
|
"prompt_logprobs": None,
|
|
"skip_special_tokens": True,
|
|
}
|
|
sampling_params = SamplingParams(**params_dict)
|
|
outputs = llm.generate(prompts=prompt, sampling_params=sampling_params)[0]
|
|
generated_text = outputs.outputs[0].text
|
|
return generated_text
|
|
|
|
|
|
def generate(chat_history: List, query: str, top_p: float, temperature: float, max_dec_len: int):
|
|
"""generate after hitting "submit" button
|
|
|
|
Args:
|
|
chat_history (List): [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n]]. list that stores all QA records
|
|
query (str): query of current round
|
|
top_p (float): only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
|
|
temperature (float): strictly positive float value used to modulate the logits distribution.
|
|
max_dec_len (int): The maximum numbers of tokens to generate.
|
|
|
|
Yields:
|
|
List: [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n], [q_n+1, a_n+1]]. chat_history + QA of current round.
|
|
"""
|
|
assert query != "", "Input must not be empty!!!"
|
|
# apply chat template
|
|
model_input = []
|
|
for q, a in chat_history:
|
|
model_input.append({"role": "user", "content": q})
|
|
model_input.append({"role": "assistant", "content": a})
|
|
model_input.append({"role": "user", "content": query})
|
|
# yield model generation
|
|
model_output = vllm_gen(model_input, top_p, temperature, max_dec_len)
|
|
chat_history.append([query, model_output])
|
|
return gr.update(value=""), chat_history
|
|
|
|
|
|
def regenerate(chat_history: List, top_p: float, temperature: float, max_dec_len: int):
|
|
"""re-generate the answer of last round's query
|
|
|
|
Args:
|
|
chat_history (List): [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n]]. list that stores all QA records
|
|
top_p (float): only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
|
|
temperature (float): strictly positive float value used to modulate the logits distribution.
|
|
max_dec_len (int): The maximum numbers of tokens to generate.
|
|
|
|
Yields:
|
|
List: [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n]]. chat_history
|
|
"""
|
|
assert len(chat_history) >= 1, "History is empty. Nothing to regenerate!!"
|
|
# apply chat template
|
|
model_input = []
|
|
for q, a in chat_history[:-1]:
|
|
model_input.append({"role": "user", "content": q})
|
|
model_input.append({"role": "assistant", "content": a})
|
|
model_input.append({"role": "user", "content": chat_history[-1][0]})
|
|
# yield model generation
|
|
model_output = vllm_gen(model_input, top_p, temperature, max_dec_len)
|
|
chat_history[-1][1] = model_output
|
|
return gr.update(value=""), chat_history
|
|
|
|
|
|
def clear_history():
|
|
"""clear all chat history
|
|
|
|
Returns:
|
|
List: empty chat history
|
|
"""
|
|
return []
|
|
|
|
|
|
def reverse_last_round(chat_history):
|
|
"""reverse last round QA and keep the chat history before
|
|
|
|
Args:
|
|
chat_history (List): [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n]]. list that stores all QA records
|
|
|
|
Returns:
|
|
List: [[q_1, a_1], [q_2, a_2], ..., [q_n-1, a_n-1]]. chat_history without last round.
|
|
"""
|
|
assert len(chat_history) >= 1, "History is empty. Nothing to reverse!!"
|
|
return chat_history[:-1]
|
|
|
|
|
|
# launch gradio demo
|
|
with gr.Blocks(theme="soft") as demo:
|
|
gr.Markdown("""# MiniCPM Gradio Demo""")
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
top_p = gr.Slider(0, 1, value=0.8, step=0.1, label="top_p")
|
|
temperature = gr.Slider(0.1, 2.0, value=0.5, step=0.1, label="temperature")
|
|
max_dec_len = gr.Slider(1, args.max_tokens, value=args.max_tokens, step=1, label="max_tokens")
|
|
with gr.Column(scale=5):
|
|
chatbot = gr.Chatbot(bubble_full_width=False, height=400)
|
|
user_input = gr.Textbox(label="User", placeholder="Input your query here!", lines=8)
|
|
with gr.Row():
|
|
submit = gr.Button("Submit")
|
|
clear = gr.Button("Clear")
|
|
regen = gr.Button("Regenerate")
|
|
reverse = gr.Button("Reverse")
|
|
|
|
submit.click(generate, inputs=[chatbot, user_input, top_p, temperature, max_dec_len], outputs=[user_input, chatbot])
|
|
regen.click(regenerate, inputs=[chatbot, top_p, temperature, max_dec_len], outputs=[user_input, chatbot])
|
|
clear.click(clear_history, inputs=[], outputs=[chatbot])
|
|
reverse.click(reverse_last_round, inputs=[chatbot], outputs=[chatbot])
|
|
|
|
demo.queue()
|
|
demo.launch(server_name=server_name, server_port=server_port, show_error=True)
|