MiniCPM/demo/function_call/openai_api_server.py
2024-09-06 20:29:35 +08:00

371 lines
13 KiB
Python

import asyncio
import importlib
import inspect
import re
from argparse import Namespace
from contextlib import asynccontextmanager
from http import HTTPStatus
from multiprocessing import Process
from typing import AsyncIterator, Set
from fastapi import APIRouter, FastAPI, Request
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, Response, StreamingResponse
from prometheus_client import make_asgi_app
from starlette.routing import Mount
import vllm.envs as envs
from vllm.config import ModelConfig
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.engine.protocol import AsyncEngineClient
from vllm.entrypoints.launcher import serve_http
from vllm.entrypoints.logger import RequestLogger
from vllm.entrypoints.openai.cli_args import make_arg_parser
# yapf conflicts with isort for this block
# yapf: disable
from openai_protocol import (ChatCompletionRequest,
ChatCompletionResponse,
CompletionRequest,
DetokenizeRequest,
DetokenizeResponse,
EmbeddingRequest, ErrorResponse,
TokenizeRequest,
TokenizeResponse)
from vllm.entrypoints.openai.rpc.client import AsyncEngineRPCClient
from vllm.entrypoints.openai.rpc.server import run_rpc_server
# yapf: enable
from openai_serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding
from vllm.entrypoints.openai.serving_tokenization import (
OpenAIServingTokenization)
from vllm.logger import init_logger
from vllm.usage.usage_lib import UsageContext
from vllm.utils import FlexibleArgumentParser, get_open_port
from vllm.version import __version__ as VLLM_VERSION
TIMEOUT_KEEP_ALIVE = 5 # seconds
async_engine_client: AsyncEngineClient
engine_args: AsyncEngineArgs
openai_serving_chat: OpenAIServingChat
openai_serving_completion: OpenAIServingCompletion
openai_serving_embedding: OpenAIServingEmbedding
openai_serving_tokenization: OpenAIServingTokenization
logger = init_logger('vllm.entrypoints.openai.api_server')
_running_tasks: Set[asyncio.Task] = set()
def model_is_embedding(model_name: str, trust_remote_code: bool) -> bool:
return ModelConfig(model=model_name,
tokenizer=model_name,
tokenizer_mode="auto",
trust_remote_code=trust_remote_code,
seed=0,
dtype="float16").embedding_mode
@asynccontextmanager
async def lifespan(app: FastAPI):
async def _force_log():
while True:
await asyncio.sleep(10)
await async_engine_client.do_log_stats()
if not engine_args.disable_log_stats:
task = asyncio.create_task(_force_log())
_running_tasks.add(task)
task.add_done_callback(_running_tasks.remove)
yield
@asynccontextmanager
async def build_async_engine_client(args) -> AsyncIterator[AsyncEngineClient]:
# Context manager to handle async_engine_client lifecycle
# Ensures everything is shutdown and cleaned up on error/exit
global engine_args
engine_args = AsyncEngineArgs.from_cli_args(args)
# Backend itself still global for the silly lil' health handler
global async_engine_client
# If manually triggered or embedding model, use AsyncLLMEngine in process.
# TODO: support embedding model via RPC.
if (model_is_embedding(args.model, args.trust_remote_code)
or args.disable_frontend_multiprocessing):
async_engine_client = AsyncLLMEngine.from_engine_args(
engine_args, usage_context=UsageContext.OPENAI_API_SERVER)
yield async_engine_client
return
# Otherwise, use the multiprocessing AsyncLLMEngine.
else:
# Start RPCServer in separate process (holds the AsyncLLMEngine).
port = get_open_port(envs.VLLM_RPC_PORT)
rpc_server_process = Process(target=run_rpc_server,
args=(engine_args,
UsageContext.OPENAI_API_SERVER,
port))
rpc_server_process.start()
# Build RPCClient, which conforms to AsyncEngineClient Protocol.
async_engine_client = AsyncEngineRPCClient(port)
await async_engine_client.setup()
try:
yield async_engine_client
finally:
# Ensure rpc server process was terminated
rpc_server_process.terminate()
# Close all open connections to the backend
async_engine_client.close()
# Wait for server process to join
rpc_server_process.join()
router = APIRouter()
def mount_metrics(app: FastAPI):
# Add prometheus asgi middleware to route /metrics requests
metrics_route = Mount("/metrics", make_asgi_app())
# Workaround for 307 Redirect for /metrics
metrics_route.path_regex = re.compile('^/metrics(?P<path>.*)$')
app.routes.append(metrics_route)
@router.get("/health")
async def health() -> Response:
"""Health check."""
await async_engine_client.check_health()
return Response(status_code=200)
@router.post("/tokenize")
async def tokenize(request: TokenizeRequest):
generator = await openai_serving_tokenization.create_tokenize(request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
else:
assert isinstance(generator, TokenizeResponse)
return JSONResponse(content=generator.model_dump())
@router.post("/detokenize")
async def detokenize(request: DetokenizeRequest):
generator = await openai_serving_tokenization.create_detokenize(request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
else:
assert isinstance(generator, DetokenizeResponse)
return JSONResponse(content=generator.model_dump())
@router.get("/v1/models")
async def show_available_models():
models = await openai_serving_completion.show_available_models()
return JSONResponse(content=models.model_dump())
@router.get("/version")
async def show_version():
ver = {"version": VLLM_VERSION}
return JSONResponse(content=ver)
@router.post("/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest,
raw_request: Request):
generator = await openai_serving_chat.create_chat_completion(
request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
if request.stream:
return StreamingResponse(content=generator,
media_type="text/event-stream")
else:
assert isinstance(generator, ChatCompletionResponse)
return JSONResponse(content=generator.model_dump())
@router.post("/v1/completions")
async def create_completion(request: CompletionRequest, raw_request: Request):
generator = await openai_serving_completion.create_completion(
request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
if request.stream:
return StreamingResponse(content=generator,
media_type="text/event-stream")
else:
return JSONResponse(content=generator.model_dump())
@router.post("/v1/embeddings")
async def create_embedding(request: EmbeddingRequest, raw_request: Request):
generator = await openai_serving_embedding.create_embedding(
request, raw_request)
if isinstance(generator, ErrorResponse):
return JSONResponse(content=generator.model_dump(),
status_code=generator.code)
else:
return JSONResponse(content=generator.model_dump())
def build_app(args: Namespace) -> FastAPI:
app = FastAPI(lifespan=lifespan)
app.include_router(router)
app.root_path = args.root_path
mount_metrics(app)
app.add_middleware(
CORSMiddleware,
allow_origins=args.allowed_origins,
allow_credentials=args.allow_credentials,
allow_methods=args.allowed_methods,
allow_headers=args.allowed_headers,
)
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(_, exc):
err = openai_serving_chat.create_error_response(message=str(exc))
return JSONResponse(err.model_dump(),
status_code=HTTPStatus.BAD_REQUEST)
if token := envs.VLLM_API_KEY or args.api_key:
@app.middleware("http")
async def authentication(request: Request, call_next):
root_path = "" if args.root_path is None else args.root_path
if request.method == "OPTIONS":
return await call_next(request)
if not request.url.path.startswith(f"{root_path}/v1"):
return await call_next(request)
if request.headers.get("Authorization") != "Bearer " + token:
return JSONResponse(content={"error": "Unauthorized"},
status_code=401)
return await call_next(request)
for middleware in args.middleware:
module_path, object_name = middleware.rsplit(".", 1)
imported = getattr(importlib.import_module(module_path), object_name)
if inspect.isclass(imported):
app.add_middleware(imported)
elif inspect.iscoroutinefunction(imported):
app.middleware("http")(imported)
else:
raise ValueError(f"Invalid middleware {middleware}. "
f"Must be a function or a class.")
return app
async def init_app(
async_engine_client: AsyncEngineClient,
args: Namespace,
) -> FastAPI:
app = build_app(args)
if args.served_model_name is not None:
served_model_names = args.served_model_name
else:
served_model_names = [args.model]
model_config = await async_engine_client.get_model_config()
if args.disable_log_requests:
request_logger = None
else:
request_logger = RequestLogger(max_log_len=args.max_log_len)
global openai_serving_chat
global openai_serving_completion
global openai_serving_embedding
global openai_serving_tokenization
openai_serving_chat = OpenAIServingChat(
async_engine_client,
model_config,
served_model_names,
args.response_role,
lora_modules=args.lora_modules,
prompt_adapters=args.prompt_adapters,
request_logger=request_logger,
chat_template=args.chat_template,
return_tokens_as_token_ids=args.return_tokens_as_token_ids,
)
openai_serving_completion = OpenAIServingCompletion(
async_engine_client,
model_config,
served_model_names,
lora_modules=args.lora_modules,
prompt_adapters=args.prompt_adapters,
request_logger=request_logger,
return_tokens_as_token_ids=args.return_tokens_as_token_ids,
)
openai_serving_embedding = OpenAIServingEmbedding(
async_engine_client,
model_config,
served_model_names,
request_logger=request_logger,
)
openai_serving_tokenization = OpenAIServingTokenization(
async_engine_client,
model_config,
served_model_names,
lora_modules=args.lora_modules,
request_logger=request_logger,
chat_template=args.chat_template,
)
app.root_path = args.root_path
return app
async def run_server(args, **uvicorn_kwargs) -> None:
logger.info("vLLM API server version %s", VLLM_VERSION)
logger.info("args: %s", args)
async with build_async_engine_client(args) as async_engine_client:
app = await init_app(async_engine_client, args)
shutdown_task = await serve_http(
app,
host=args.host,
port=args.port,
log_level=args.uvicorn_log_level,
timeout_keep_alive=TIMEOUT_KEEP_ALIVE,
ssl_keyfile=args.ssl_keyfile,
ssl_certfile=args.ssl_certfile,
ssl_ca_certs=args.ssl_ca_certs,
ssl_cert_reqs=args.ssl_cert_reqs,
**uvicorn_kwargs,
)
# NB: Await server shutdown only after the backend context is exited
await shutdown_task
if __name__ == "__main__":
# NOTE(simon):
# This section should be in sync with vllm/scripts.py for CLI entrypoints.
parser = FlexibleArgumentParser(
description="vLLM OpenAI-Compatible RESTful API server.")
parser = make_arg_parser(parser)
args = parser.parse_args()
asyncio.run(run_server(args))