import asyncio import importlib import inspect import re from argparse import Namespace from contextlib import asynccontextmanager from http import HTTPStatus from multiprocessing import Process from typing import AsyncIterator, Set from fastapi import APIRouter, FastAPI, Request from fastapi.exceptions import RequestValidationError from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse, Response, StreamingResponse from prometheus_client import make_asgi_app from starlette.routing import Mount import vllm.envs as envs from vllm.config import ModelConfig from vllm.engine.arg_utils import AsyncEngineArgs from vllm.engine.async_llm_engine import AsyncLLMEngine from vllm.engine.protocol import AsyncEngineClient from vllm.entrypoints.launcher import serve_http from vllm.entrypoints.logger import RequestLogger from vllm.entrypoints.openai.cli_args import make_arg_parser # yapf conflicts with isort for this block # yapf: disable from openai_protocol import (ChatCompletionRequest, ChatCompletionResponse, CompletionRequest, DetokenizeRequest, DetokenizeResponse, EmbeddingRequest, ErrorResponse, TokenizeRequest, TokenizeResponse) from vllm.entrypoints.openai.rpc.client import AsyncEngineRPCClient from vllm.entrypoints.openai.rpc.server import run_rpc_server # yapf: enable from openai_serving_chat import OpenAIServingChat from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion from vllm.entrypoints.openai.serving_embedding import OpenAIServingEmbedding from vllm.entrypoints.openai.serving_tokenization import ( OpenAIServingTokenization) from vllm.logger import init_logger from vllm.usage.usage_lib import UsageContext from vllm.utils import FlexibleArgumentParser, get_open_port from vllm.version import __version__ as VLLM_VERSION TIMEOUT_KEEP_ALIVE = 5 # seconds async_engine_client: AsyncEngineClient engine_args: AsyncEngineArgs openai_serving_chat: OpenAIServingChat openai_serving_completion: OpenAIServingCompletion openai_serving_embedding: OpenAIServingEmbedding openai_serving_tokenization: OpenAIServingTokenization logger = init_logger('vllm.entrypoints.openai.api_server') _running_tasks: Set[asyncio.Task] = set() def model_is_embedding(model_name: str, trust_remote_code: bool) -> bool: return ModelConfig(model=model_name, tokenizer=model_name, tokenizer_mode="auto", trust_remote_code=trust_remote_code, seed=0, dtype="float16").embedding_mode @asynccontextmanager async def lifespan(app: FastAPI): async def _force_log(): while True: await asyncio.sleep(10) await async_engine_client.do_log_stats() if not engine_args.disable_log_stats: task = asyncio.create_task(_force_log()) _running_tasks.add(task) task.add_done_callback(_running_tasks.remove) yield @asynccontextmanager async def build_async_engine_client(args) -> AsyncIterator[AsyncEngineClient]: # Context manager to handle async_engine_client lifecycle # Ensures everything is shutdown and cleaned up on error/exit global engine_args engine_args = AsyncEngineArgs.from_cli_args(args) # Backend itself still global for the silly lil' health handler global async_engine_client # If manually triggered or embedding model, use AsyncLLMEngine in process. # TODO: support embedding model via RPC. if (model_is_embedding(args.model, args.trust_remote_code) or args.disable_frontend_multiprocessing): async_engine_client = AsyncLLMEngine.from_engine_args( engine_args, usage_context=UsageContext.OPENAI_API_SERVER) yield async_engine_client return # Otherwise, use the multiprocessing AsyncLLMEngine. else: # Start RPCServer in separate process (holds the AsyncLLMEngine). port = get_open_port(envs.VLLM_RPC_PORT) rpc_server_process = Process(target=run_rpc_server, args=(engine_args, UsageContext.OPENAI_API_SERVER, port)) rpc_server_process.start() # Build RPCClient, which conforms to AsyncEngineClient Protocol. async_engine_client = AsyncEngineRPCClient(port) await async_engine_client.setup() try: yield async_engine_client finally: # Ensure rpc server process was terminated rpc_server_process.terminate() # Close all open connections to the backend async_engine_client.close() # Wait for server process to join rpc_server_process.join() router = APIRouter() def mount_metrics(app: FastAPI): # Add prometheus asgi middleware to route /metrics requests metrics_route = Mount("/metrics", make_asgi_app()) # Workaround for 307 Redirect for /metrics metrics_route.path_regex = re.compile('^/metrics(?P.*)$') app.routes.append(metrics_route) @router.get("/health") async def health() -> Response: """Health check.""" await async_engine_client.check_health() return Response(status_code=200) @router.post("/tokenize") async def tokenize(request: TokenizeRequest): generator = await openai_serving_tokenization.create_tokenize(request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) else: assert isinstance(generator, TokenizeResponse) return JSONResponse(content=generator.model_dump()) @router.post("/detokenize") async def detokenize(request: DetokenizeRequest): generator = await openai_serving_tokenization.create_detokenize(request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) else: assert isinstance(generator, DetokenizeResponse) return JSONResponse(content=generator.model_dump()) @router.get("/v1/models") async def show_available_models(): models = await openai_serving_completion.show_available_models() return JSONResponse(content=models.model_dump()) @router.get("/version") async def show_version(): ver = {"version": VLLM_VERSION} return JSONResponse(content=ver) @router.post("/v1/chat/completions") async def create_chat_completion(request: ChatCompletionRequest, raw_request: Request): generator = await openai_serving_chat.create_chat_completion( request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) if request.stream: return StreamingResponse(content=generator, media_type="text/event-stream") else: assert isinstance(generator, ChatCompletionResponse) return JSONResponse(content=generator.model_dump()) @router.post("/v1/completions") async def create_completion(request: CompletionRequest, raw_request: Request): generator = await openai_serving_completion.create_completion( request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) if request.stream: return StreamingResponse(content=generator, media_type="text/event-stream") else: return JSONResponse(content=generator.model_dump()) @router.post("/v1/embeddings") async def create_embedding(request: EmbeddingRequest, raw_request: Request): generator = await openai_serving_embedding.create_embedding( request, raw_request) if isinstance(generator, ErrorResponse): return JSONResponse(content=generator.model_dump(), status_code=generator.code) else: return JSONResponse(content=generator.model_dump()) def build_app(args: Namespace) -> FastAPI: app = FastAPI(lifespan=lifespan) app.include_router(router) app.root_path = args.root_path mount_metrics(app) app.add_middleware( CORSMiddleware, allow_origins=args.allowed_origins, allow_credentials=args.allow_credentials, allow_methods=args.allowed_methods, allow_headers=args.allowed_headers, ) @app.exception_handler(RequestValidationError) async def validation_exception_handler(_, exc): err = openai_serving_chat.create_error_response(message=str(exc)) return JSONResponse(err.model_dump(), status_code=HTTPStatus.BAD_REQUEST) if token := envs.VLLM_API_KEY or args.api_key: @app.middleware("http") async def authentication(request: Request, call_next): root_path = "" if args.root_path is None else args.root_path if request.method == "OPTIONS": return await call_next(request) if not request.url.path.startswith(f"{root_path}/v1"): return await call_next(request) if request.headers.get("Authorization") != "Bearer " + token: return JSONResponse(content={"error": "Unauthorized"}, status_code=401) return await call_next(request) for middleware in args.middleware: module_path, object_name = middleware.rsplit(".", 1) imported = getattr(importlib.import_module(module_path), object_name) if inspect.isclass(imported): app.add_middleware(imported) elif inspect.iscoroutinefunction(imported): app.middleware("http")(imported) else: raise ValueError(f"Invalid middleware {middleware}. " f"Must be a function or a class.") return app async def init_app( async_engine_client: AsyncEngineClient, args: Namespace, ) -> FastAPI: app = build_app(args) if args.served_model_name is not None: served_model_names = args.served_model_name else: served_model_names = [args.model] model_config = await async_engine_client.get_model_config() if args.disable_log_requests: request_logger = None else: request_logger = RequestLogger(max_log_len=args.max_log_len) global openai_serving_chat global openai_serving_completion global openai_serving_embedding global openai_serving_tokenization openai_serving_chat = OpenAIServingChat( async_engine_client, model_config, served_model_names, args.response_role, lora_modules=args.lora_modules, prompt_adapters=args.prompt_adapters, request_logger=request_logger, chat_template=args.chat_template, return_tokens_as_token_ids=args.return_tokens_as_token_ids, ) openai_serving_completion = OpenAIServingCompletion( async_engine_client, model_config, served_model_names, lora_modules=args.lora_modules, prompt_adapters=args.prompt_adapters, request_logger=request_logger, return_tokens_as_token_ids=args.return_tokens_as_token_ids, ) openai_serving_embedding = OpenAIServingEmbedding( async_engine_client, model_config, served_model_names, request_logger=request_logger, ) openai_serving_tokenization = OpenAIServingTokenization( async_engine_client, model_config, served_model_names, lora_modules=args.lora_modules, request_logger=request_logger, chat_template=args.chat_template, ) app.root_path = args.root_path return app async def run_server(args, **uvicorn_kwargs) -> None: logger.info("vLLM API server version %s", VLLM_VERSION) logger.info("args: %s", args) async with build_async_engine_client(args) as async_engine_client: app = await init_app(async_engine_client, args) shutdown_task = await serve_http( app, host=args.host, port=args.port, log_level=args.uvicorn_log_level, timeout_keep_alive=TIMEOUT_KEEP_ALIVE, ssl_keyfile=args.ssl_keyfile, ssl_certfile=args.ssl_certfile, ssl_ca_certs=args.ssl_ca_certs, ssl_cert_reqs=args.ssl_cert_reqs, **uvicorn_kwargs, ) # NB: Await server shutdown only after the backend context is exited await shutdown_task if __name__ == "__main__": # NOTE(simon): # This section should be in sync with vllm/scripts.py for CLI entrypoints. parser = FlexibleArgumentParser( description="vLLM OpenAI-Compatible RESTful API server.") parser = make_arg_parser(parser) args = parser.parse_args() asyncio.run(run_server(args))