# coding=utf-8 # Copyright 2022 The OpenBMB team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List from typing import Optional from typing import Tuple import torch import torch.nn.functional as F from typing_extensions import TypedDict from transformers.configuration_utils import PretrainedConfig class CPMDragonflyConfig(PretrainedConfig): model_type = "cpmdragonfly" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "num_key_value_heads": "num_kv_heads", "hidden_act": "activate_fn", "hidden_size": "dim_model", "num_attention_heads": "num_heads", "intermediate_size": "dim_ff", "num_hidden_layers": "num_layers", "vocab_size": "vocab_size", "rms_norm_eps": "eps", "scale_emb": "scale_emb", "scale_depth": "scale_depth", "scale": "scale", "attention_scale": "attention_scale" } def __init__( self, vocab_size=32000, dim_model=4096, num_heads=32, num_kv_heads=32, dim_head=128, dim_ff=11008, num_layers=32, dropout_p=0.0, activate_fn="silu", scale=True, scale_emb: float=1., scale_depth: float=-1, dim_model_base:int=None, eps=1e-5, init_std=0.02, half: bool = True, half_type = 'bf16', mask_modules: Optional[List[Tuple[bool, bool]]] = None, use_flash_attn: bool = True, flash_attn_mask_shape="1d", flash_impl="cuda", base=10000, non_checkpointing_layers_num:int = 0, attention_scale=1, max_position_embeddings=8192, rope_scaling=None, **kwargs, ): self.vocab_size = vocab_size self.dim_model = dim_model self.num_heads = num_heads self.num_kv_heads = num_kv_heads self.dim_head = dim_head self.dim_ff = dim_ff self.num_layers = num_layers self.dropout_p = dropout_p self.activate_fn = activate_fn self.scale = scale self.scale_emb = scale_emb self.half = half self.half_type = half_type self.dim_model_base = dim_model_base self.scale_depth = scale_depth self.eps = eps self.init_std = init_std self.flash_impl = flash_impl self.mask_modules = mask_modules self.use_flash_attn = use_flash_attn self.flash_attn_mask_shape = flash_attn_mask_shape self.base = base self.attention_scale=attention_scale self.max_position_embeddings = max_position_embeddings self.non_checkpointing_layers_num = non_checkpointing_layers_num self.rope_scaling = rope_scaling super().__init__(architectures=["CPMDragonflyForCausalLM"]) @property def scale_width(self,): if self.scale: return self.dim_model / self.dim_model_base else: return 1. @property def dtype(self, ): if self.half: if self.half_type == 'bf16': return torch.bfloat16 else: return torch.half else: return torch.float