import torch import torch.nn as nn from tqdm import tqdm from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer #import GPUtil import argparse parser = argparse.ArgumentParser(description="========量化困惑度测试========") parser.add_argument( "--model_path", type=str, default='/root/ld/ld_model_pretrained/miniCPM-bf16', help="未量化前的模型路径。" ) parser.add_argument( "--awq_path", type=str, default='/root/ld/ld_project/pull_request/MiniCPM/quantize/awq_cpm_2b_4bit', help="awq量化后的模型保存路径。" ) #we will support gptq later parser.add_argument( "--gptq_path", type=str, default='/root/ld/ld_project/AutoGPTQ/examples/quantization/minicpm_2b_4bit', help="gptq量化后的模型保存路径。" ) parser.add_argument( "--data_path", type=str, default='quantize_data/wikitext', help="可以是以后的量化数据集,示例中默认为wiki_text" ) def get_device(): if torch.backends.mps.is_available(): return "mps" elif torch.cuda.is_available(): return "cuda:0" else: return "cpu" def evaluate_perplexity(model, tokenizer,data_path): def _perplexity(nlls, n_samples, seqlen): return torch.exp(torch.stack(nlls).sum() / (n_samples * seqlen)) data = load_dataset(data_path, split="test") data = tokenizer("\n\n".join(data["text"]), return_tensors="pt") data = data.input_ids.to('cuda:0') seqlen = 2048 model = model.eval() n_samples = data.numel() // seqlen nlls = [] with tqdm(range(n_samples), desc="Perplexity -") as progress_bar: for i in progress_bar: start_index = i * seqlen end_index = (i + 1) * seqlen batch = data[:, start_index:end_index].to('cuda:0') with torch.no_grad(): logits = model(batch).logits shift_logits = logits[:, :-1, :].contiguous().float() shift_labels = data[:, start_index:end_index][:, 1:] loss_fct = nn.CrossEntropyLoss() loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) ) neg_log_likelihood = loss.float() * seqlen nlls.append(neg_log_likelihood) curr_ppl = _perplexity(nlls, i + 1, seqlen) progress_bar.set_description(f"Perplexity {curr_ppl:.3f}") ppl = _perplexity(nlls, n_samples, seqlen) return ppl.item() if __name__ == "__main__": args = parser.parse_args() if args.model_path: model = AutoModelForCausalLM.from_pretrained(args.model_path, torch_dtype=torch.bfloat16, device_map='cuda', trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(args.model_path) print("pretrained model:",args.model_path.split('/')[-1]) gpu_usage = GPUtil.getGPUs()[0].memoryUsed print(f"gpu usage: {round(gpu_usage/1024,2)}GB") evaluate_perplexity(model, tokenizer, args.data_path) del model if args.awq_path: from awq import AutoAWQForCausalLM model = AutoAWQForCausalLM.from_quantized(args.awq_path, fuse_layers=True,device_map={"":'cuda:0'}) tokenizer = AutoTokenizer.from_pretrained(args.awq_path) print("awq model:",args.awq_path.split('/')[-1]) gpu_usage = GPUtil.getGPUs()[0].memoryUsed print(f"gpu usage: {round(gpu_usage/1024,2)}GB") evaluate_perplexity(model, tokenizer, args.data_path) del model #we will support the autogptq later if args.gptq_path: from auto_gptq import AutoGPTQForCausalLM tokenizer = AutoTokenizer.from_pretrained(args.gptq_path, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(args.gptq_path, device="cuda:0",trust_remote_code=True) print("gptq model:",args.gptq_path.split('/')[-1]) gpu_usage = GPUtil.getGPUs()[0].memoryUsed print(f"gpu usage: {round(gpu_usage/1024,2)}GB") evaluate_perplexity(model, tokenizer, args.data_path)