{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# MiniCPM-2B 参数高效微调(LoRA)A100 80G 单卡示例\n", "\n", "显存更小的显卡可用 batch size 和 grad_accum 间时间换空间\n", "\n", "本 notebook 是一个使用 `AdvertiseGen` 数据集对 MiniCPM-2B 进行 LoRA 微调,使其具备专业的广告生成能力的代码示例。\n", "\n", "## 最低硬件需求\n", "- 显存:12GB\n", "- 显卡架构:安培架构(推荐)\n", "- 内存:16GB" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. 准备数据集\n", "\n", "将数据集转换为更通用的格式\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# 转换为 ChatML 格式\n", "import os\n", "import shutil\n", "import json\n", "\n", "input_dir = \"data/AdvertiseGen\"\n", "output_dir = \"data/AdvertiseGenChatML\"\n", "if os.path.exists(output_dir):\n", " shutil.rmtree(output_dir)\n", "os.makedirs(output_dir, exist_ok=True)\n", "\n", "for fn in [\"train.json\", \"dev.json\"]:\n", " data_out_list = []\n", " with open(os.path.join(input_dir, fn), \"r\") as f, open(os.path.join(output_dir, fn), \"w\") as fo:\n", " for line in f:\n", " if len(line.strip()) > 0:\n", " data = json.loads(line)\n", " data_out = {\n", " \"messages\": [\n", " {\n", " \"role\": \"user\",\n", " \"content\": data[\"content\"],\n", " },\n", " {\n", " \"role\": \"assistant\",\n", " \"content\": data[\"summary\"],\n", " },\n", " ]\n", " }\n", " data_out_list.append(data_out)\n", " json.dump(data_out_list, fo, ensure_ascii=False, indent=4)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. 使用 LoRA 进行微调\n", "\n", "命令行一键运行" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!bash lora_finetune.sh" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 推理验证" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import torch\n", "from tqdm import tqdm\n", "from transformers import AutoModelForCausalLM, AutoTokenizer" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "path = \"output/AdvertiseGenLoRA/20240315224356/checkpoint-3000\"\n", "tokenizer = AutoTokenizer.from_pretrained(path)\n", "model = AutoModelForCausalLM.from_pretrained(\n", " path, torch_dtype=torch.bfloat16, device_map=\"cuda\", trust_remote_code=True\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "res, history = model.chat(tokenizer, query=\"<用户>类型#上衣*材质#牛仔布*颜色#白色*风格#简约*图案#刺绣*衣样式#外套*衣款式#破洞\", max_length=80, top_p=0.5)\n", "res, history" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 2 }