Merge pull request #157 from LDLINGLINGLING/main

add support autoawq for minicpm
This commit is contained in:
LDLINGLINGLING 2024-06-25 12:04:55 +08:00 committed by GitHub
commit dc76234d43
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
30 changed files with 258768 additions and 2 deletions

View File

@ -49,6 +49,7 @@ MiniCPM 是面壁智能与清华大学自然语言处理实验室共同开源的
- [更新日志](#0)
- [模型下载](#1)
- [快速上手](#2)
- [模型量化](#quantize)
- [开源社区](#community)
- [评测结果](#3)
- [手机部署](#4)
@ -258,7 +259,9 @@ print(model.response("<用户>山东省最高的山是哪座山, 它比黄山高
```shell
python -m mlx_lm.generate --model mlx-community/MiniCPM-2B-sft-bf16-llama-format-mlx --prompt "hello, tell me a joke." --trust-remote-code
```
<p id="community"></p>
## 模型量化
**gptq量化**
1. 首先git获取[minicpm_gptqd代码](https://github.com/LDLINGLINGLING/AutoGPTQ/tree/minicpm_gptq)
2. 进入minicpm_gptqd主目录./AutoGPTQ命令行输入
@ -271,6 +274,29 @@ print(model.response("<用户>山东省最高的山是哪座山, 它比黄山高
python quant_with_alpaca.py --pretrained_model_dir no_quantized_path --quantized_model_dir save_path --bits 4
```
5. 可以使用./AutoGPTQ/examples/quantization/inference.py进行推理也可以参考前文使用vllm对量化后的模型单卡4090下minicpm-1b-int4模型vllm推理在2000token/s左右。
**awq量化**
1. 在quantize/awq_quantize.py 文件中修改根据注释修改配置参数model_path , quant_path, quant_data_path , quant_config, quant_samples, 如需自定数据集则需要修改 custom_data。
2. 在quantize/quantize_data文件下已经提供了alpaca和wiki_text两个数据集作为量化校准集如果需要自定义数据集修改quantize/awq_quantize.py中的custom_data变量
```
custom_data=[{'question':'过敏性鼻炎有什么症状?','answer':'过敏性鼻炎可能鼻塞,流鼻涕,头痛等症状反复发作,严重时建议及时就医。'},
{'question':'1+1等于多少','answer':'等于2'}]
```
3. 运行quantize/awq_quantize.py文件,在设置的quan_path目录下可得awq量化后的模型。
**量化测试**
1. 命令行进入到 MiniCPM/quantize 目录下
2. 修改quantize_eval.sh文件中awq_pathgptq_pathawq_path,如果不需要测试的类型保持为空字符串如下示例表示仅测试awq模型
```
awq_path="/root/ld/ld_project/AutoAWQ/examples/awq_cpm_1b_4bit"
gptq_path=""
model_path=""
```
3. 在MiniCPM/quantize路径下命令行输入
```
bash quantize_eval.sh
```
4. 窗口将输出该模型的内存占用情况、困惑度。
<p id="community"></p>
## 开源社区

View File

@ -12,7 +12,7 @@ from transformers import (AutoModelForCausalLM, AutoTokenizer, Trainer,
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="baichuan-inc/Baichuan2-7B-Base")
model_name_or_path: Optional[str] = field(default="openbmb/MiniCPM-2B-sft-bf16")
@dataclass
@ -195,4 +195,4 @@ if __name__ == "__main__":
trainer.train()
# save the incremental PEFT weights, more details can be found in https://huggingface.co/blog/peft
# model.save_pretrained("output_dir")
# model.save_pretrained("output_dir")

44
quantize/awq_quantize.py Normal file
View File

@ -0,0 +1,44 @@
from datasets import load_dataset
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
import os
model_path = '/root/ld/ld_model_pretrained/MiniCPM-1B-sft-bf16' # model_path or model_id
quant_path = '/root/ld/ld_project/pull_request/MiniCPM/quantize/awq_cpm_1b_4bit' # quant_save_path
quant_data_path='/root/ld/ld_project/pull_request/MiniCPM/quantize/quantize_data/wikitext'# 写入自带
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" } # "w_bit":4 or 8
quant_samples=512 # how many samples to use for calibration
custom_data=[{'question':'你叫什么名字。','answer':'我是openmbmb开源的小钢炮minicpm。'},
{'question':'你有什么特色。','answer':'我很小,但是我很强。'}]
# Load model
model = AutoAWQForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True,device_map={"": "cuda:0"})
# Define data loading methods
def load_alpaca(quant_data_path):
data = load_dataset(quant_data_path, split="train") # Set the absolute path to alpaca or huggingface id
# concatenate data
def concatenate_data(x):
return {"text": '<s><用户>'+x['instruction'] + x['input'] + '<AI>' + '\n' + x['output']}
concatenated = data.map(concatenate_data)[:quant_samples]
return [text for text in concatenated["text"]]
def load_wikitext(quant_data_path):
data = load_dataset(quant_data_path, split="train")
return [text for text in data["text"] if text.strip() != '' and len(text.split(' ')) > 20][:quant_samples]
def load_cust_data(custom_data):
quant_data=['<s><用户>'+i['question'] + '<AI>' + i['answer'] + '<s>' for i in custom_data]
return quant_data[:quant_samples]
# Quantize
model.quantize(tokenizer, quant_config=quant_config, calib_data=load_wikitext(quant_data_path=quant_data_path))
# Save quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)
print(f'Model is quantized and saved at "{quant_path}"')

View File

@ -0,0 +1 @@
{"url": "hf://datasets/tatsu-lab/alpaca@dce01c9b08f87459cf36a430d809084718273017/data/train-00000-of-00001-a09b74b3ef9c3b56.parquet", "etag": null}

View File

@ -0,0 +1 @@
{"description": "", "citation": "", "homepage": "", "license": "", "features": {"instruction": {"dtype": "string", "_type": "Value"}, "input": {"dtype": "string", "_type": "Value"}, "output": {"dtype": "string", "_type": "Value"}, "text": {"dtype": "string", "_type": "Value"}}, "builder_name": "parquet", "dataset_name": "alpaca", "config_name": "default", "version": {"version_str": "0.0.0", "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 46208623, "num_examples": 52002, "dataset_name": "alpaca"}}, "download_checksums": {"hf://datasets/tatsu-lab/alpaca@dce01c9b08f87459cf36a430d809084718273017/data/train-00000-of-00001-a09b74b3ef9c3b56.parquet": {"num_bytes": 24246638, "checksum": null}}, "download_size": 24246638, "dataset_size": 46208623, "size_in_bytes": 70455261}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1 @@
{"url": "hf://datasets/wikitext@b08601e04326c79dfdd32d625aee71d232d685c3/wikitext-2-raw-v1/validation-00000-of-00001.parquet", "etag": null}

View File

@ -0,0 +1 @@
{"url": "hf://datasets/wikitext@b08601e04326c79dfdd32d625aee71d232d685c3/wikitext-2-raw-v1/test-00000-of-00001.parquet", "etag": null}

View File

@ -0,0 +1 @@
{"url": "hf://datasets/wikitext@b08601e04326c79dfdd32d625aee71d232d685c3/wikitext-2-raw-v1/train-00000-of-00001.parquet", "etag": null}

View File

@ -0,0 +1 @@
{"description": "", "citation": "", "homepage": "", "license": "", "features": {"text": {"dtype": "string", "_type": "Value"}}, "builder_name": "parquet", "dataset_name": "wikitext", "config_name": "wikitext-2-raw-v1", "version": {"version_str": "0.0.0", "major": 0, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1305088, "num_examples": 4358, "dataset_name": "wikitext"}, "train": {"name": "train", "num_bytes": 11061717, "num_examples": 36718, "dataset_name": "wikitext"}, "validation": {"name": "validation", "num_bytes": 1159288, "num_examples": 3760, "dataset_name": "wikitext"}}, "download_checksums": {"hf://datasets/wikitext@b08601e04326c79dfdd32d625aee71d232d685c3/wikitext-2-raw-v1/test-00000-of-00001.parquet": {"num_bytes": 732610, "checksum": null}, "hf://datasets/wikitext@b08601e04326c79dfdd32d625aee71d232d685c3/wikitext-2-raw-v1/train-00000-of-00001.parquet": {"num_bytes": 6357543, "checksum": null}, "hf://datasets/wikitext@b08601e04326c79dfdd32d625aee71d232d685c3/wikitext-2-raw-v1/validation-00000-of-00001.parquet": {"num_bytes": 657209, "checksum": null}}, "download_size": 7747362, "dataset_size": 13526093, "size_in_bytes": 21273455}

115
quantize/quantize_eval.py Normal file
View File

@ -0,0 +1,115 @@
import torch
import torch.nn as nn
from tqdm import tqdm
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
import GPUtil
import argparse
parser = argparse.ArgumentParser(description="========量化困惑度测试========")
parser.add_argument(
"--model_path",
type=str,
default='',
help="未量化前的模型路径。"
)
parser.add_argument(
"--awq_path",
type=str,
default='',
help="awq量化后的模型保存路径。"
)
#we will support gptq later
parser.add_argument(
"--gptq_path",
type=str,
default='',
help="gptq量化后的模型保存路径。"
)
parser.add_argument(
"--data_path",
type=str,
default='quantize_data/wikitext',
help="可以是以后的量化数据集示例中默认为wiki_text"
)
def get_device():
if torch.backends.mps.is_available():
return "mps"
elif torch.cuda.is_available():
return "cuda:0"
else:
return "cpu"
def evaluate_perplexity(model, tokenizer,data_path):
def _perplexity(nlls, n_samples, seqlen):
return torch.exp(torch.stack(nlls).sum() / (n_samples * seqlen))
data = load_dataset(data_path, split="test")
data = tokenizer("\n\n".join(data["text"]), return_tensors="pt")
data = data.input_ids.to('cuda:0')
seqlen = 2048
model = model.eval()
n_samples = data.numel() // seqlen
nlls = []
with tqdm(range(n_samples), desc="Perplexity -") as progress_bar:
for i in progress_bar:
start_index = i * seqlen
end_index = (i + 1) * seqlen
batch = data[:, start_index:end_index].to('cuda:0')
with torch.no_grad():
logits = model(batch).logits
shift_logits = logits[:, :-1, :].contiguous().float()
shift_labels = data[:, start_index:end_index][:, 1:]
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
)
neg_log_likelihood = loss.float() * seqlen
nlls.append(neg_log_likelihood)
curr_ppl = _perplexity(nlls, i + 1, seqlen)
progress_bar.set_description(f"Perplexity {curr_ppl:.3f}")
ppl = _perplexity(nlls, n_samples, seqlen)
return ppl.item()
if __name__ == "__main__":
args = parser.parse_args()
if args.model_path != "":
model = AutoModelForCausalLM.from_pretrained(args.model_path, torch_dtype=torch.bfloat16, device_map='cuda', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
print("pretrained model",args.model_path.split('/')[-1])
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
print(f"gpu usage: {round(gpu_usage/1024,2)}GB")
evaluate_perplexity(model, tokenizer, args.data_path)
del model
if args.awq_path != "":
from awq import AutoAWQForCausalLM
model = AutoAWQForCausalLM.from_quantized(args.awq_path, fuse_layers=True,device_map={"":'cuda:0'})
tokenizer = AutoTokenizer.from_pretrained(args.awq_path)
print("awq model",args.awq_path.split('/')[-1])
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
print(f"gpu usage: {round(gpu_usage/1024,2)}GB")
evaluate_perplexity(model, tokenizer, args.data_path)
del model
#we will support the autogptq later
if args.gptq_path != "":
from auto_gptq import AutoGPTQForCausalLM
tokenizer = AutoTokenizer.from_pretrained(args.gptq_path, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(args.gptq_path, device="cuda:0",trust_remote_code=True)
print("gptq model",args.gptq_path.split('/')[-1])
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
print(f"gpu usage: {round(gpu_usage/1024,2)}GB")
evaluate_perplexity(model, tokenizer, args.data_path)

View File

@ -0,0 +1,8 @@
#!/bin/bash
awq_path="/root/ld/ld_project/AutoAWQ/examples/awq_cpm_1b_4bit"
gptq_path=""
model_path=""
python quantize_eval.py --awq_path "${awq_path}" \
--model_path "${model_path}" --gptq_path "${gptq_path}"