mirror of
https://github.com/RYDE-WORK/MiniCPM.git
synced 2026-02-05 06:33:25 +08:00
Merge pull request #21 from soulteary/feat/allow-set-torch-dtype
feat: allow user set torch dtype #20
This commit is contained in:
commit
d614cdcd35
@ -14,15 +14,24 @@ from transformers import (
|
|||||||
|
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument("--model_path", type=str, default="")
|
parser.add_argument("--model_path", type=str, default="")
|
||||||
|
parser.add_argument("--torch_dtype", type=str, default="bfloat16", choices=["float32", "bfloat16"]))
|
||||||
parser.add_argument("--server_name", type=str, default="127.0.0.1")
|
parser.add_argument("--server_name", type=str, default="127.0.0.1")
|
||||||
parser.add_argument("--server_port", type=int, default=7860)
|
parser.add_argument("--server_port", type=int, default=7860)
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# init model torch dtype
|
||||||
|
torch_dtype = args.torch_dtype
|
||||||
|
if torch_dtype =="" or torch_dtype == "bfloat16":
|
||||||
|
torch_dtype = torch.bfloat16
|
||||||
|
elif torch_dtype == "float32":
|
||||||
|
torch_dtype = torch.float32
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Invalid torch dtype: {torch_dtype}")
|
||||||
|
|
||||||
# init model and tokenizer
|
# init model and tokenizer
|
||||||
path = args.model_path
|
path = args.model_path
|
||||||
tokenizer = AutoTokenizer.from_pretrained(path)
|
tokenizer = AutoTokenizer.from_pretrained(path)
|
||||||
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
|
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch_dtype, device_map="auto", trust_remote_code=True)
|
||||||
|
|
||||||
# init gradio demo host and port
|
# init gradio demo host and port
|
||||||
server_name=args.server_name
|
server_name=args.server_name
|
||||||
|
|||||||
@ -9,14 +9,24 @@ from vllm import LLM, SamplingParams
|
|||||||
|
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument("--model_path", type=str, default="")
|
parser.add_argument("--model_path", type=str, default="")
|
||||||
|
parser.add_argument("--torch_dtype", type=str, default="bfloat16", choices=["float32", "bfloat16"]))
|
||||||
parser.add_argument("--server_name", type=str, default="127.0.0.1")
|
parser.add_argument("--server_name", type=str, default="127.0.0.1")
|
||||||
parser.add_argument("--server_port", type=int, default=7860)
|
parser.add_argument("--server_port", type=int, default=7860)
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
# init model torch dtype
|
||||||
|
torch_dtype = args.torch_dtype
|
||||||
|
if torch_dtype =="" or torch_dtype == "bfloat16":
|
||||||
|
torch_dtype = "bfloat16"
|
||||||
|
elif torch_dtype == "float32":
|
||||||
|
torch_dtype = "float32"
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Invalid torch dtype: {torch_dtype}")
|
||||||
|
|
||||||
# init model and tokenizer
|
# init model and tokenizer
|
||||||
path = args.model_path
|
path = args.model_path
|
||||||
llm = LLM(model=path, tensor_parallel_size=1, dtype="bfloat16")
|
llm = LLM(model=path, tensor_parallel_size=1, dtype=torch_dtype)
|
||||||
|
|
||||||
# init gradio demo host and port
|
# init gradio demo host and port
|
||||||
server_name=args.server_name
|
server_name=args.server_name
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user