mirror of
https://github.com/RYDE-WORK/MiniCPM.git
synced 2026-01-22 14:30:05 +08:00
Optimize gradio-based demo
This commit is contained in:
parent
e8fb7abea2
commit
9c0fb61c32
@ -18,7 +18,7 @@ tokenizer = AutoTokenizer.from_pretrained(path)
|
||||
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
|
||||
|
||||
|
||||
def hf_gen(query: str, top_p: float, temperature: float, max_dec_len: int):
|
||||
def hf_gen(dialog: str, top_p: float, temperature: float, max_dec_len: int):
|
||||
"""generate model output with huggingface api
|
||||
|
||||
Args:
|
||||
@ -30,10 +30,11 @@ def hf_gen(query: str, top_p: float, temperature: float, max_dec_len: int):
|
||||
Yields:
|
||||
str: real-time generation results of hf model
|
||||
"""
|
||||
inputs = tokenizer([query], return_tensors="pt").to("cuda")
|
||||
inputs = tokenizer.apply_chat_template(dialog, tokenize=False, add_generation_prompt=False)
|
||||
enc = tokenizer(inputs, return_tensors="pt").to("cuda")
|
||||
streamer = TextIteratorStreamer(tokenizer)
|
||||
generation_kwargs = dict(
|
||||
inputs,
|
||||
enc,
|
||||
do_sample=True,
|
||||
top_p=top_p,
|
||||
temperature=temperature,
|
||||
@ -45,7 +46,7 @@ def hf_gen(query: str, top_p: float, temperature: float, max_dec_len: int):
|
||||
answer = ""
|
||||
for new_text in streamer:
|
||||
answer += new_text
|
||||
yield answer
|
||||
yield answer[4 + len(inputs):]
|
||||
|
||||
|
||||
def generate(chat_history: List, query: str, top_p: float, temperature: float, max_dec_len: int):
|
||||
@ -63,14 +64,15 @@ def generate(chat_history: List, query: str, top_p: float, temperature: float, m
|
||||
"""
|
||||
assert query != "", "Input must not be empty!!!"
|
||||
# apply chat template
|
||||
model_input = ""
|
||||
model_input = []
|
||||
for q, a in chat_history:
|
||||
model_input += "<用户>" + q + "<AI>" + a
|
||||
model_input += "<用户>" + query + "<AI>"
|
||||
model_input.append({"role": "user", "content": q})
|
||||
model_input.append({"role": "assistant", "content": a})
|
||||
model_input.append({"role": "user", "content": query})
|
||||
# yield model generation
|
||||
chat_history.append([query, ""])
|
||||
for answer in hf_gen(model_input, top_p, temperature, max_dec_len):
|
||||
chat_history[-1][1] = answer[4 + len(model_input):].strip("</s>")
|
||||
chat_history[-1][1] = answer.strip("</s>")
|
||||
yield gr.update(value=""), chat_history
|
||||
|
||||
|
||||
@ -88,13 +90,14 @@ def regenerate(chat_history: List, top_p: float, temperature: float, max_dec_len
|
||||
"""
|
||||
assert len(chat_history) >= 1, "History is empty. Nothing to regenerate!!"
|
||||
# apply chat template
|
||||
model_input = ""
|
||||
model_input = []
|
||||
for q, a in chat_history[:-1]:
|
||||
model_input += "<用户>" + q + "<AI>" + a
|
||||
model_input += "<用户>" + chat_history[-1][0] + "<AI>"
|
||||
model_input.append({"role": "user", "content": q})
|
||||
model_input.append({"role": "assistant", "content": a})
|
||||
model_input.append({"role": "user", "content": chat_history[-1][0]})
|
||||
# yield model generation
|
||||
for answer in hf_gen(model_input, top_p, temperature, max_dec_len):
|
||||
chat_history[-1][1] = answer[4 + len(model_input):].strip("</s>")
|
||||
chat_history[-1][1] = answer.strip("</s>")
|
||||
yield gr.update(value=""), chat_history
|
||||
|
||||
|
||||
@ -125,8 +128,8 @@ with gr.Blocks(theme="soft") as demo:
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=1):
|
||||
top_p = gr.Slider(0, 1, value=0.5, step=0.1, label="top_p")
|
||||
temperature = gr.Slider(0.1, 2.0, value=1.0, step=0.1, label="temperature")
|
||||
top_p = gr.Slider(0, 1, value=0.8, step=0.1, label="top_p")
|
||||
temperature = gr.Slider(0.1, 2.0, value=0.8, step=0.1, label="temperature")
|
||||
max_dec_len = gr.Slider(1, 1024, value=1024, step=1, label="max_dec_len")
|
||||
with gr.Column(scale=5):
|
||||
chatbot = gr.Chatbot(bubble_full_width=False, height=400)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user