更新VLLM的书写方式

This commit is contained in:
zR 2024-04-14 14:23:11 +08:00
parent e58d99f8ca
commit 8272667430
2 changed files with 34 additions and 27 deletions

View File

@ -1,36 +1,46 @@
from typing import Dict
from typing import List
from typing import Tuple
import argparse
import gradio as gr
from vllm import LLM, SamplingParams
import torch
from transformers import AutoTokenizer
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="")
parser.add_argument("--model_path", type=str, default="openbmb/MiniCPM-1B-sft-bf16")
parser.add_argument("--torch_dtype", type=str, default="bfloat16", choices=["float32", "bfloat16"])
parser.add_argument("--server_name", type=str, default="127.0.0.1")
parser.add_argument("--server_port", type=int, default=7860)
args = parser.parse_args()
parser.add_argument("--max_tokens", type=int, default=2048)
# for MiniCPM-1B and MiniCPM-2B model, max_tokens should be set to 2048
args = parser.parse_args()
# init model torch dtype
torch_dtype = args.torch_dtype
if torch_dtype =="" or torch_dtype == "bfloat16":
torch_dtype = "bfloat16"
if torch_dtype == "" or torch_dtype == "bfloat16":
torch_dtype = torch.bfloat16
elif torch_dtype == "float32":
torch_dtype = "float32"
torch_dtype = torch.float32
elif torch_dtype == "float16":
torch_dtype = torch.float16
else:
raise ValueError(f"Invalid torch dtype: {torch_dtype}")
# init model and tokenizer
path = args.model_path
llm = LLM(model=path, tensor_parallel_size=1, dtype=torch_dtype)
llm = LLM(
model=path,
tensor_parallel_size=1,
dtype=torch_dtype,
trust_remote_code=True,
gpu_memory_utilization=0.9,
max_model_len=args.max_tokens
)
tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
server_name = args.server_name
server_port = args.server_port
# init gradio demo host and port
server_name=args.server_name
server_port=args.server_port
def vllm_gen(dialog: List, top_p: float, temperature: float, max_dec_len: int):
"""generate model output with huggingface api
@ -44,14 +54,8 @@ def vllm_gen(dialog: List, top_p: float, temperature: float, max_dec_len: int):
Yields:
str: real-time generation results of hf model
"""
prompt = ""
assert len(dialog) % 2 == 1
for info in dialog:
if info["role"] == "user":
prompt += "<用户>" + info["content"]
else:
prompt += "<AI>" + info["content"]
prompt += "<AI>"
prompt = tokenizer.apply_chat_template(dialog, tokenize=False, add_generation_prompt=False)
params_dict = {
"n": 1,
"best_of": 1,
@ -158,7 +162,7 @@ with gr.Blocks(theme="soft") as demo:
with gr.Column(scale=1):
top_p = gr.Slider(0, 1, value=0.8, step=0.1, label="top_p")
temperature = gr.Slider(0.1, 2.0, value=0.5, step=0.1, label="temperature")
max_dec_len = gr.Slider(1, 1024, value=1024, step=1, label="max_dec_len")
max_dec_len = gr.Slider(1, args.max_tokens, value=args.max_tokens, step=1, label="max_tokens")
with gr.Column(scale=5):
chatbot = gr.Chatbot(bubble_full_width=False, height=400)
user_input = gr.Textbox(label="User", placeholder="Input your query here!", lines=8)

View File

@ -3,6 +3,9 @@ torch>=2.0.0
transformers>=4.36.2
gradio>=4.26.0
# for vllm inference
# vllm>=0.4.0.post1
# for openai api inference
openai>=1.17.1
tiktoken>=0.6.0