Merge pull request #110 from zRzRzRzRzRzRzR/main

mlx inference
This commit is contained in:
ywfang 2024-04-11 11:19:20 +08:00 committed by GitHub
commit 789060f769
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 822 additions and 13 deletions

4
.gitignore vendored
View File

@ -2,3 +2,7 @@
*.pyc
finetune/output/*
wip.*
.idea
venv
.venv
.env

View File

@ -488,6 +488,12 @@ python demo/vllm_based_demo.py --model_path <vllmcpm_repo_path>
python demo/hf_based_demo.py --model_path <hf_repo_path>
```
#### 使用如下命令启动基于 Mac mlx 加速框架推理
你需要安装 `mlx_lm` 库,并且,你需要下载对应的转换后的专用模型权重[MiniCPM-2B-sft-bf16-llama-format-mlx](https://huggingface.co/mlx-community/MiniCPM-2B-sft-bf16-llama-format-mlx),然后运行以下命令:
```shell
python -m mlx_lm.generate --model mlx-community/MiniCPM-2B-sft-bf16-llama-format-mlx --prompt "hello, tell me a joke." --trust-remote-code
```
<p id="6"></p>

View File

@ -7,26 +7,29 @@ import gradio as gr
import torch
from threading import Thread
from transformers import (
AutoModelForCausalLM,
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer
)
import warnings
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="")
parser.add_argument("--torch_dtype", type=str, default="bfloat16", choices=["float32", "bfloat16"])
parser.add_argument("--torch_dtype", type=str, default="bfloat16", choices=["float32", "bfloat16", "float16"])
parser.add_argument("--server_name", type=str, default="127.0.0.1")
parser.add_argument("--server_port", type=int, default=7860)
args = parser.parse_args()
# init model torch dtype
torch_dtype = args.torch_dtype
if torch_dtype =="" or torch_dtype == "bfloat16":
if torch_dtype == "" or torch_dtype == "bfloat16":
torch_dtype = torch.bfloat16
elif torch_dtype == "float32":
torch_dtype = torch.float32
elif torch_dtype == "float16":
torch_dtype = torch.float16
else:
raise ValueError(f"Invalid torch dtype: {torch_dtype}")
@ -36,8 +39,8 @@ tokenizer = AutoTokenizer.from_pretrained(path)
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch_dtype, device_map="auto", trust_remote_code=True)
# init gradio demo host and port
server_name=args.server_name
server_port=args.server_port
server_name = args.server_name
server_port = args.server_port
def hf_gen(dialog: List, top_p: float, temperature: float, repetition_penalty: float, max_dec_len: int):
"""generate model output with huggingface api
@ -50,7 +53,7 @@ def hf_gen(dialog: List, top_p: float, temperature: float, repetition_penalty: f
Yields:
str: real-time generation results of hf model
"""
"""
inputs = tokenizer.apply_chat_template(dialog, tokenize=False, add_generation_prompt=False)
enc = tokenizer(inputs, return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(tokenizer)
@ -73,7 +76,8 @@ def hf_gen(dialog: List, top_p: float, temperature: float, repetition_penalty: f
yield answer[4 + len(inputs):]
def generate(chat_history: List, query: str, top_p: float, temperature: float, repetition_penalty: float, max_dec_len: int):
def generate(chat_history: List, query: str, top_p: float, temperature: float, repetition_penalty: float,
max_dec_len: int):
"""generate after hitting "submit" button
Args:
@ -85,7 +89,7 @@ def generate(chat_history: List, query: str, top_p: float, temperature: float, r
Yields:
List: [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n], [q_n+1, a_n+1]]. chat_history + QA of current round.
"""
"""
assert query != "", "Input must not be empty!!!"
# apply chat template
model_input = []
@ -111,7 +115,7 @@ def regenerate(chat_history: List, top_p: float, temperature: float, repetition_
Yields:
List: [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n]]. chat_history
"""
"""
assert len(chat_history) >= 1, "History is empty. Nothing to regenerate!!"
# apply chat template
model_input = []
@ -130,7 +134,7 @@ def clear_history():
Returns:
List: empty chat history
"""
"""
return []
@ -142,7 +146,7 @@ def reverse_last_round(chat_history):
Returns:
List: [[q_1, a_1], [q_2, a_2], ..., [q_n-1, a_n-1]]. chat_history without last round.
"""
"""
assert len(chat_history) >= 1, "History is empty. Nothing to reverse!!"
return chat_history[:-1]
@ -166,8 +170,10 @@ with gr.Blocks(theme="soft") as demo:
regen = gr.Button("Regenerate")
reverse = gr.Button("Reverse")
submit.click(generate, inputs=[chatbot, user_input, top_p, temperature, repetition_penalty, max_dec_len], outputs=[user_input, chatbot])
regen.click(regenerate, inputs=[chatbot, top_p, temperature, repetition_penalty, max_dec_len], outputs=[user_input, chatbot])
submit.click(generate, inputs=[chatbot, user_input, top_p, temperature, repetition_penalty, max_dec_len],
outputs=[user_input, chatbot])
regen.click(regenerate, inputs=[chatbot, top_p, temperature, repetition_penalty, max_dec_len],
outputs=[user_input, chatbot])
clear.click(clear_history, inputs=[], outputs=[chatbot])
reverse.click(reverse_last_round, inputs=[chatbot], outputs=[chatbot])

42
demo/mlx_based_demo.py Normal file
View File

@ -0,0 +1,42 @@
"""
使用 MLX 快速推理 MiniCPM
如果你使用 Mac 设备进行推理可以直接使用MLX进行推理
由于 MiniCPM 暂时不支持 mlx 格式转换您可以下载由 MLX 社群转换好的模型 [MiniCPM-2B-sft-bf16-llama-format-mlx](https://huggingface.co/mlx-community/MiniCPM-2B-sft-bf16-llama-format-mlx)
并安装对应的依赖包
```bash
pip install mlx-lm
```
这是一个简单的推理代码使用 Mac 设备推理 MiniCPM-2
```python
python -m mlx_lm.generate --model mlx-community/MiniCPM-2B-sft-bf16-llama-format-mlx --prompt "hello, tell me a joke." --trust-remote-code
```
"""
from mlx_lm import load, generate
from jinja2 import Template
def chat_with_model():
model, tokenizer = load("mlx-community/MiniCPM-2B-sft-bf16-llama-format-mlx")
print("Model loaded. Start chatting! (Type 'quit' to stop)")
messages = []
chat_template = Template(
"{% for message in messages %}{% if message['role'] == 'user' %}{{'<用户>' + message['content'].strip() + '<AI>'}}{% else %}{{message['content'].strip()}}{% endif %}{% endfor %}")
while True:
user_input = input("You: ")
if user_input.lower() == 'quit':
break
messages.append({"role": "user", "content": user_input})
response = generate(model, tokenizer, prompt=chat_template.render(messages=messages), verbose=True)
print("Model:", response)
messages.append({"role": "ai", "content": response})
chat_with_model()

739
finetune/mlx_finetune.py Normal file
View File

@ -0,0 +1,739 @@
# Copyright © 2023-2024 Apple Inc.
"""
This script demonstrates how to fine-tune a LoRA model on AdvertiseGen dataset in mlx.
Using Code is modified from https://github.com/ml-explore/mlx-examples.
Using Model with https://huggingface.co/mlx-community/MiniCPM-2B-sft-bf16-llama-format-mlx
Use this Code with command:
train:
python mlx_finetune.py --model MiniCPM-2B-sft-bf16-llama-format-mlx --data data/AdvertiseGen --train --seed 2024 --iters 500
输出结果如下
Training
Iter 1: Val loss 4.015, Val took 1067.669s
Iter 2: Val loss 4.001, Val took 1061.649s
...
训练结束之后文件夹下会有 adapters.npz 文件用于后续的测试接着运行测试命令
test:
python mlx_finetune.py --model MiniCPM-2B-sft-bf16-llama-format-mlx --data data/AdvertiseGen --test --seed 2024
输出结果如下
Testing
Test loss 3.977, Test ppl 53.350.
"""
import argparse
import json
import time
from pathlib import Path
from typing import Generator
import transformers
import numpy as np
from huggingface_hub import snapshot_download
import glob
import inspect
import math
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
from mlx.utils import tree_flatten, tree_unflatten
import mlx.optimizers as optim
import mlx.core as mx
import mlx.nn as nn
@dataclass
class ModelArgs:
hidden_size: int
num_hidden_layers: int
intermediate_size: int
num_attention_heads: int
rms_norm_eps: float
vocab_size: int
num_key_value_heads: int = None
rope_theta: float = 10000
rope_traditional: bool = False
model_type: str = None
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
def __post_init__(self):
if self.num_key_value_heads is None:
self.num_key_value_heads = self.num_attention_heads
if self.rope_scaling:
required_keys = {"factor", "type"}
if not all(key in self.rope_scaling for key in required_keys):
raise ValueError(f"rope_scaling must contain keys {required_keys}")
if self.rope_scaling["type"] != "linear":
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
@classmethod
def from_dict(cls, params):
return cls(
**{
k: v
for k, v in params.items()
if k in inspect.signature(cls).parameters
}
)
class LoRALinear(nn.Module):
@staticmethod
def from_linear(linear: nn.Linear, rank: int = 8):
# TODO remove when input_dims and output_dims are attributes
# on linear and quantized linear
output_dims, input_dims = linear.weight.shape
if isinstance(linear, nn.QuantizedLinear):
input_dims *= 32 // linear.bits
lora_lin = LoRALinear(input_dims, output_dims, rank)
lora_lin.linear = linear
return lora_lin
def to_linear(self):
linear = self.linear
bias = "bias" in linear
weight = linear.weight
is_quantized = isinstance(linear, nn.QuantizedLinear)
# Use the same type as the linear weight if not quantized
dtype = weight.dtype
if is_quantized:
dtype = mx.float16
weight = mx.dequantize(
weight,
linear.scales,
linear.biases,
linear.group_size,
linear.bits,
)
output_dims, input_dims = weight.shape
fused_linear = nn.Linear(input_dims, output_dims, bias=bias)
lora_b = (self.scale * self.lora_b.T).astype(dtype)
lora_a = self.lora_a.T.astype(dtype)
fused_linear.weight = weight + lora_b @ lora_a
if bias:
fused_linear.bias = linear.bias
if is_quantized:
fused_linear = nn.QuantizedLinear.from_linear(
fused_linear,
linear.group_size,
linear.bits,
)
return fused_linear
def __init__(
self,
input_dims: int,
output_dims: int,
lora_rank: int = 8,
bias: bool = False,
scale: float = 20.0,
):
super().__init__()
# Regular linear layer weights
self.linear = nn.Linear(input_dims, output_dims, bias=bias)
# Scale for low-rank update
self.scale = scale
# Low rank lora weights
scale = 1 / math.sqrt(input_dims)
self.lora_a = mx.random.uniform(
low=-scale,
high=scale,
shape=(input_dims, lora_rank),
)
self.lora_b = mx.zeros(shape=(lora_rank, output_dims))
def __call__(self, x):
dtype = self.linear.weight.dtype
if isinstance(self.linear, nn.QuantizedLinear):
dtype = self.linear.scales.dtype
y = self.linear(x.astype(dtype))
z = (x @ self.lora_a) @ self.lora_b
return y + self.scale * z
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
dim = args.hidden_size
self.n_heads = n_heads = args.num_attention_heads
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
self.repeats = n_heads // n_kv_heads
head_dim = args.hidden_size // n_heads
self.scale = head_dim ** -0.5
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
rope_scale = (
1 / args.rope_scaling["factor"]
if args.rope_scaling is not None and args.rope_scaling["type"] == "linear"
else 1
)
self.rope = nn.RoPE(
head_dim,
traditional=args.rope_traditional,
base=args.rope_theta,
scale=rope_scale,
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
B, L, D = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output), (keys, values)
class MLP(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
def __call__(self, x) -> mx.array:
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.num_attention_heads = args.num_attention_heads
self.hidden_size = args.hidden_size
self.self_attn = Attention(args)
self.mlp = MLP(args.hidden_size, args.intermediate_size)
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
self.post_attention_layernorm = nn.RMSNorm(
args.hidden_size, eps=args.rms_norm_eps
)
self.args = args
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
h = x + r
r = self.mlp(self.post_attention_layernorm(h))
out = h + r
return out, cache
class LlamaModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.num_hidden_layers = args.num_hidden_layers
assert self.vocab_size > 0
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
]
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
def __call__(
self,
inputs: mx.array,
cache=None,
):
h = self.embed_tokens(inputs)
mask = None
if h.shape[1] > 1:
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
mask = mask.astype(h.dtype)
if cache is None:
cache = [None] * len(self.layers)
for e, layer in enumerate(self.layers):
h, cache[e] = layer(h, mask, cache[e])
return self.norm(h), cache
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.model = LlamaModel(args)
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
def __call__(
self,
inputs: mx.array,
cache=None,
):
out, cache = self.model(inputs, cache)
return self.lm_head(out), cache
def build_parser():
parser = argparse.ArgumentParser(description="LoRA or QLoRA finetuning.")
parser.add_argument(
"--model",
default="mlx_model",
help="The path to the local model directory or Hugging Face repo.",
)
# Generation args
parser.add_argument(
"--max-tokens",
"-m",
type=int,
default=100,
help="The maximum number of tokens to generate",
)
parser.add_argument(
"--temp", type=float, default=0.8, help="The sampling temperature"
)
parser.add_argument(
"--prompt",
"-p",
type=str,
help="The prompt for generation",
default=None,
)
# Training args
parser.add_argument(
"--train",
action="store_true",
help="Do training",
)
parser.add_argument(
"--data",
type=str,
default="data/",
help="Directory with {train, valid, test}.json files",
)
parser.add_argument(
"--lora-layers",
type=int,
default=16,
help="Number of layers to fine-tune",
)
parser.add_argument("--batch-size", type=int, default=4, help="Minibatch size.")
parser.add_argument(
"--iters", type=int, default=1000, help="Iterations to train for."
)
parser.add_argument(
"--val-batches",
type=int,
default=25,
help="Number of validation batches, -1 uses the entire validation set.",
)
parser.add_argument(
"--learning-rate", type=float, default=1e-5, help="Adam learning rate."
)
parser.add_argument(
"--steps-per-report",
type=int,
default=10,
help="Number of training steps between loss reporting.",
)
parser.add_argument(
"--steps-per-eval",
type=int,
default=200,
help="Number of training steps between validations.",
)
parser.add_argument(
"--resume-adapter-file",
type=str,
default=None,
help="Load path to resume training with the given adapter weights.",
)
parser.add_argument(
"--adapter-file",
type=str,
default="adapters.npz",
help="Save/load path for the trained adapter weights.",
)
parser.add_argument(
"--save-every",
type=int,
default=100,
help="Save the model every N iterations.",
)
parser.add_argument(
"--test",
action="store_true",
help="Evaluate on the test set after training",
)
parser.add_argument(
"--test-batches",
type=int,
default=500,
help="Number of test set batches, -1 uses the entire test set.",
)
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
return parser
class ConversationDataset:
def __init__(self, path: Path):
with open(path, "r") as fid:
self._data = [json.loads(l) for l in fid]
def __getitem__(self, idx: int):
entry = self._data[idx]
content = entry.get("content", "")
summary = entry.get("summary", "")
return content, summary
def __len__(self):
return len(self._data)
def load(args):
def load_and_check(name):
dataset_path = Path(args.data) / f"{name}.json"
try:
return ConversationDataset(dataset_path)
except Exception as e:
print(f"Unable to build dataset {dataset_path} ({e})")
raise
names = ("train", "dev", "dev")
train, valid, test = (load_and_check(n) for n in names)
if args.train and len(train) == 0:
raise ValueError(
"Training set not found or empty. Must provide training set for fine-tuning."
)
if args.train and len(valid) == 0:
raise ValueError(
"Validation set not found or empty. Must provide validation set for fine-tuning."
)
if args.test and len(test) == 0:
raise ValueError(
"Test set not found or empty. Must provide test set for evaluation."
)
return train, valid, test
def loss(model, inputs, targets, lengths):
logits, _ = model(inputs)
logits = logits.astype(mx.float32)
length_mask = mx.arange(inputs.shape[1])[None, :] < lengths[:, None]
ce = nn.losses.cross_entropy(logits, targets) * length_mask
ntoks = length_mask.sum()
ce = ce.sum() / ntoks
return ce, ntoks
def iterate_batches(dset, tokenizer, batch_size, train=False):
# Shuffle indices
while True:
indices = np.arange(len(dset))
if train:
indices = np.random.permutation(indices)
# Collect batches from dataset
for i in range(0, len(indices) - batch_size + 1, batch_size):
# Encode batch
batch = [tokenizer.encode(dset[indices[i + j]]) for j in range(batch_size)]
lengths = [len(x) for x in batch]
# Check if any sequence is longer than 2048 tokens
if max(lengths) > 2048:
print(
"[WARNING] Some sequences are longer than 2048 tokens. "
"Consider pre-splitting your data to save memory."
)
# Pad to the max length
batch_arr = np.zeros((batch_size, max(lengths)), np.int32)
for j in range(batch_size):
batch_arr[j, : lengths[j]] = batch[j]
batch = mx.array(batch_arr)
yield batch[:, :-1], batch[:, 1:], mx.array(lengths)
if not train:
break
def load_model(path_or_hf_repo: str):
# If the path exists, it will try to load model form it
# otherwise download and cache from the hf_repo and cache
model_path = Path(path_or_hf_repo)
if not model_path.exists():
model_path = Path(
snapshot_download(
repo_id=path_or_hf_repo,
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
)
)
with open(model_path / "config.json", "r") as f:
config = json.loads(f.read())
quantization = config.get("quantization", None)
weight_files = glob.glob(str(model_path / "*.safetensors"))
if len(weight_files) == 0:
raise FileNotFoundError("No safetensors found in {}".format(model_path))
weights = {}
for wf in weight_files:
weights.update(mx.load(wf).items())
model_args = ModelArgs.from_dict(config)
model = Model(model_args)
if quantization is not None:
nn.QuantizedLinear.quantize_module(
model,
**quantization,
linear_class_predicate=lambda m: isinstance(m, nn.Linear)
and m.weight.shape[0] != 8,
)
model.load_weights(list(weights.items()))
mx.eval(model.parameters())
tokenizer = transformers.AutoTokenizer.from_pretrained(model_path)
return model, tokenizer, config
def generate(
prompt: mx.array, model: nn.Module, temp: float = 0.0
) -> Generator[mx.array, None, None]:
"""
Generate text based on the given prompt and model.
Args:
prompt (mx.array): The input prompt.
model (nn.Module): The model to use for generation.
temp (float): The temperature for sampling. If temp is 0, use max sampling.
Yields:
mx.array: The generated text.
"""
def sample(logits: mx.array) -> mx.array:
return (
mx.argmax(logits, axis=-1)
if temp == 0
else mx.random.categorical(logits * (1 / temp))
)
y = prompt
cache = None
while True:
logits, cache = model(y[None], cache=cache)
logits = logits[:, -1, :]
y = sample(logits)
yield y
def evaluate(model, dataset, loss, tokenizer, batch_size, num_batches):
all_losses = []
ntokens = 0
for it, batch in zip(
range(num_batches),
iterate_batches(dataset, tokenizer, batch_size),
):
losses, toks = loss(model, *batch)
all_losses.append((losses * toks).item())
ntokens += toks.item()
return np.sum(all_losses) / ntokens
def train(model, train_set, val_set, optimizer, loss, tokenizer, args):
# Create value and grad function for loss
loss_value_and_grad = nn.value_and_grad(model, loss)
losses = []
n_tokens = 0
# Main training loop
start = time.perf_counter()
for it, batch in zip(
range(args.iters),
iterate_batches(train_set, tokenizer, args.batch_size, train=True),
):
# Forward and backward pass
(lvalue, toks), grad = loss_value_and_grad(model, *batch)
# Model update
optimizer.update(model, grad)
mx.eval(model.parameters(), optimizer.state, lvalue)
# Record loss
losses.append(lvalue.item())
n_tokens += toks.item()
if (it + 1) % args.steps_per_report == 0:
train_loss = np.mean(losses)
stop = time.perf_counter()
print(
f"Iter {it + 1}: Train loss {train_loss:.3f}, "
f"It/sec {args.steps_per_report / (stop - start):.3f}, "
f"Tokens/sec {float(n_tokens) / (stop - start):.3f}"
)
losses = []
n_tokens = 0
start = time.perf_counter()
# Report validation loss if needed
if it == 0 or (it + 1) % args.steps_per_eval == 0:
stop = time.perf_counter()
val_loss = evaluate(
model, val_set, loss, tokenizer, args.batch_size, args.val_batches
)
print(
f"Iter {it + 1}: "
f"Val loss {val_loss:.3f}, "
f"Val took {(time.perf_counter() - stop):.3f}s"
)
start = time.perf_counter()
# Save adapter weights if needed
if (it + 1) % args.save_every == 0:
mx.savez(
args.adapter_file, **dict(tree_flatten(model.trainable_parameters()))
)
print(f"Iter {it + 1}: Saved adapter weights to {args.adapter_file}.")
def generate(model, prompt, tokenizer, args):
print(prompt, end="", flush=True)
prompt = mx.array(tokenizer.encode(prompt))
tokens = []
skip = 0
for token, n in zip(
generate(prompt, model, args.temp),
range(args.max_tokens),
):
if token == tokenizer.eos_token_id:
break
tokens.append(token.item())
s = tokenizer.decode(tokens)
if len(s) - skip > 1:
print(s[skip:-1], end="", flush=True)
skip = len(s) - 1
print(tokenizer.decode(tokens)[skip:], flush=True)
print("=" * 10)
if len(tokens) == 0:
print("No tokens generated for this prompt")
return
if __name__ == "__main__":
parser = build_parser()
args = parser.parse_args()
np.random.seed(args.seed)
print("Loading pretrained model")
model, tokenizer, _ = load_model(args.model)
# Freeze all layers other than LORA linears
model.freeze()
for l in model.model.layers[len(model.model.layers) - args.lora_layers:]:
l.self_attn.q_proj = LoRALinear.from_linear(l.self_attn.q_proj)
l.self_attn.v_proj = LoRALinear.from_linear(l.self_attn.v_proj)
if hasattr(l, "block_sparse_moe"):
l.block_sparse_moe.gate = LoRALinear.from_linear(l.block_sparse_moe.gate)
p = sum(v.size for _, v in tree_flatten(model.parameters())) / 10 ** 6
print(f"Total parameters {p:.3f}M")
p = sum(v.size for _, v in tree_flatten(model.trainable_parameters())) / 10 ** 6
print(f"Trainable parameters {p:.3f}M")
print("Loading datasets")
train_set, valid_set, test_set = load(args)
# Resume training the given adapters.
if args.resume_adapter_file is not None:
print(f"Loading pretrained adapters from {args.resume_adapter_file}")
model.load_weights(args.resume_adapter_file, strict=False)
if args.train:
print("Training")
opt = optim.Adam(learning_rate=args.learning_rate)
# Train model
train(model, train_set, valid_set, opt, loss, tokenizer, args)
# Save adapter weights
mx.savez(args.adapter_file, **dict(tree_flatten(model.trainable_parameters())))
# Load the LoRA adapter weights which we assume should exist by this point
if not Path(args.adapter_file).is_file():
raise ValueError(
f"Adapter file {args.adapter_file} missing. "
"Use --train to learn and save the adapters.npz."
)
model.load_weights(args.adapter_file, strict=False)
if args.test:
print("Testing")
model.eval()
test_loss = evaluate(
model,
test_set,
loss,
tokenizer,
args.batch_size,
num_batches=args.test_batches,
)
test_ppl = math.exp(test_loss)
print(f"Test loss {test_loss:.3f}, Test ppl {test_ppl:.3f}.")
if args.prompt is not None:
print("Generating")
generate(model, args.prompt, tokenizer, args)

12
requirements.txt Normal file
View File

@ -0,0 +1,12 @@
transformers>=4.39.1
torch>=2.2.0
triton>=2.2.0
httpx>=0.27.0
gradio>=4.26.0
flash_attn>=2.4.1
accelerate>=0.29.2
sentence_transformers>=2.6.1
sse_starlette>=2.1.0
tiktoken>=0.6.0
mlx_lm>=0.8.0
openai>=0.16.2