mirror of
https://github.com/RYDE-WORK/MiniCPM.git
synced 2026-01-19 12:53:36 +08:00
增加了quantize目录下的readme
This commit is contained in:
parent
dae9354e96
commit
5a3ed8359c
62
quantize/readme.md
Normal file
62
quantize/readme.md
Normal file
@ -0,0 +1,62 @@
|
||||
## 模型量化
|
||||
<p id="gptq"></p>
|
||||
|
||||
**gptq量化**
|
||||
1. 首先git获取[minicpm_gptqd代码](https://github.com/LDLINGLINGLING/AutoGPTQ/tree/minicpm_gptq)
|
||||
2. 进入minicpm_gptqd主目录./AutoGPTQ,命令行输入:
|
||||
```
|
||||
pip install e .
|
||||
```
|
||||
3. 前往[模型下载](#1)下载未量化的MiniCPM仓库下所有文件放至本地同一文件夹下,1b、2b模型均可,训练后模型亦可。
|
||||
4. 命令行输入以下命令,其中no_quantized_model_path是第3步模型下载路径,save_path是量化模型保存路径,--bits 为量化位数可以选择输入4或者8
|
||||
```
|
||||
cd Minicpm/quantize
|
||||
python gptq_quantize.py --pretrained_model_dir no_quant_model_path --quantized_model_dir quant_save_path --bits 4
|
||||
```
|
||||
5. 可以使用./AutoGPTQ/examples/quantization/inference.py进行推理,也可以参考前文使用vllm对量化后的模型,单卡4090下minicpm-1b-int4模型vllm推理在2000token/s左右。
|
||||
|
||||
<p id="awq"></p>
|
||||
|
||||
**awq量化**
|
||||
1. 在quantize/awq_quantize.py 文件中修改根据注释修改配置参数:
|
||||
```python
|
||||
model_path = '/root/ld/ld_model_pretrained/MiniCPM-1B-sft-bf16' # model_path or model_id
|
||||
quant_path = '/root/ld/ld_project/pull_request/MiniCPM/quantize/awq_cpm_1b_4bit' # quant_save_path
|
||||
quant_data_path='/root/ld/ld_project/pull_request/MiniCPM/quantize/quantize_data/wikitext'# 写入自带量化数据集,data下的alpaca或者wikitext
|
||||
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" } # "w_bit":4 or 8
|
||||
quant_samples=512 # how many samples to use for calibration
|
||||
custom_data=[{'question':'你叫什么名字。','answer':'我是openmbmb开源的小钢炮minicpm。'}, # 自定义数据集可用
|
||||
{'question':'你有什么特色。','answer':'我很小,但是我很强。'}]
|
||||
```
|
||||
2. 在quantize/quantize_data文件下已经提供了alpaca和wiki_text两个数据集作为量化校准集,修改上述quant_data_path为其中一个文件夹的路径
|
||||
3. 如果需要自定义数据集,修改quantize/awq_quantize.py中的custom_data变量,如:
|
||||
```python
|
||||
custom_data=[{'question':'过敏性鼻炎有什么症状?','answer':'过敏性鼻炎可能鼻塞,流鼻涕,头痛等症状反复发作,严重时建议及时就医。'},
|
||||
{'question':'1+1等于多少?','answer':'等于2'}]
|
||||
```
|
||||
4. 根据选择的数据集,选择以下某一行代码替换 quantize/awq_quantize.py 中第三十八行:
|
||||
```python
|
||||
#使用wikitext进行量化
|
||||
model.quantize(tokenizer, quant_config=quant_config, calib_data=load_wikitext(quant_data_path=quant_data_path))
|
||||
#使用alpaca进行量化
|
||||
model.quantize(tokenizer, quant_config=quant_config, calib_data=load_alpaca(quant_data_path=quant_data_path))
|
||||
#使用自定义数据集进行量化
|
||||
model.quantize(tokenizer, quant_config=quant_config, calib_data=load_cust_data(quant_data_path=quant_data_path))
|
||||
|
||||
```
|
||||
5. 运行quantize/awq_quantize.py文件,在设置的quan_path目录下可得awq量化后的模型。
|
||||
<p id="quantize_test"></p>
|
||||
|
||||
**量化测试**
|
||||
1. 命令行进入到 MiniCPM/quantize 目录下
|
||||
2. 修改quantize_eval.sh文件中awq_path,gptq_path,awq_path,如果不需要测试的类型保持为空字符串,如下示例表示仅测试awq模型:
|
||||
```
|
||||
awq_path="/root/ld/ld_project/AutoAWQ/examples/awq_cpm_1b_4bit"
|
||||
gptq_path=""
|
||||
model_path=""
|
||||
```
|
||||
3. 在MiniCPM/quantize路径下命令行输入:
|
||||
```
|
||||
bash quantize_eval.sh
|
||||
```
|
||||
4. 窗口将输出该模型的内存占用情况、困惑度。
|
||||
Loading…
x
Reference in New Issue
Block a user