增加了bnb量化的测试

This commit is contained in:
root 2024-07-15 14:48:53 +08:00
parent e77af7b19a
commit 23a52259de
4 changed files with 34 additions and 17 deletions

View File

@ -5,12 +5,12 @@ from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer from transformers import AutoTokenizer
import os import os
model_path = '/root/ld/ld_model_pretrained/MiniCPM-1B-sft-bf16' # model_path or model_id model_path = '/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16' # model_path or model_id
quant_path = '/root/ld/ld_project/pull_request/MiniCPM/quantize/awq_cpm_1b_4bit' # quant_save_path quant_path = '/root/ld/pull_request/MiniCPM/quantize/awq_cpm_1b_4bit' # quant_save_path
quant_data_path='/root/ld/ld_project/pull_request/MiniCPM/quantize/quantize_data/wikitext'# 写入自带数据集地址 quant_data_path='/root/ld/pull_request/MiniCPM/quantize/quantize_data/wikitext'# 写入自带数据集地址
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" } # "w_bit":4 or 8 quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" } # "w_bit":4 or 8
quant_samples=512 # how many samples to use for calibration quant_samples=512 # how many samples to use for calibration
custom_data=[{'question':'你叫什么名字。','answer':'我是openmbmb开源的小钢炮minicpm'}, # 自定义数据集可用 custom_data=[{'question':'鼻炎犯了怎么办','answer':'可以使用生理盐水进行清洗'}, # 自定义数据集可用
{'question':'你有什么特色。','answer':'我很小,但是我很强。'}] {'question':'你有什么特色。','answer':'我很小,但是我很强。'}]
# Load model # Load model
model = AutoAWQForCausalLM.from_pretrained(model_path) model = AutoAWQForCausalLM.from_pretrained(model_path)

View File

@ -98,8 +98,8 @@ def load_data(data_path, tokenizer, n_samples):
def main(): def main():
parser = ArgumentParser() parser = ArgumentParser()
parser.add_argument("--pretrained_model_dir", type=str,default='/root/ld/ld_model_pretrained/MiniCPM-1B-sft-bf16') parser.add_argument("--pretrained_model_dir", type=str,default='/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16')
parser.add_argument("--quantized_model_dir", type=str, default='/root/ld/ld_project/AutoGPTQ/examples/quantization/minicpm_1b_4bit') parser.add_argument("--quantized_model_dir", type=str, default='/root/ld/pull_request/MiniCPM/quantize/gptq_cpm_1b_4bit')
parser.add_argument("--bits", type=int, default=4, choices=[2, 3, 4])#do not use 8 bit parser.add_argument("--bits", type=int, default=4, choices=[2, 3, 4])#do not use 8 bit
parser.add_argument( parser.add_argument(
"--group_size", "--group_size",

View File

@ -2,7 +2,7 @@ import torch
import torch.nn as nn import torch.nn as nn
from tqdm import tqdm from tqdm import tqdm
from datasets import load_dataset from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import AutoModelForCausalLM, AutoTokenizer,AutoConfig
import GPUtil import GPUtil
import argparse import argparse
@ -13,6 +13,12 @@ parser.add_argument(
default='', default='',
help="未量化前的模型路径。" help="未量化前的模型路径。"
) )
parser.add_argument(
"--bnb_path",
type=str,
default='',
help="bnb量化后的模型路径。"
)
parser.add_argument( parser.add_argument(
"--awq_path", "--awq_path",
type=str, type=str,
@ -83,9 +89,9 @@ if __name__ == "__main__":
args = parser.parse_args() args = parser.parse_args()
if args.model_path != "": if args.model_path != "":
print("pretrained model",args.model_path.split('/')[-1])
model = AutoModelForCausalLM.from_pretrained(args.model_path, torch_dtype=torch.bfloat16, device_map='cuda', trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(args.model_path, torch_dtype=torch.bfloat16, device_map='cuda', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(args.model_path) tokenizer = AutoTokenizer.from_pretrained(args.model_path)
print("pretrained model",args.model_path.split('/')[-1])
gpu_usage = GPUtil.getGPUs()[0].memoryUsed gpu_usage = GPUtil.getGPUs()[0].memoryUsed
print(f"gpu usage: {round(gpu_usage/1024,2)}GB") print(f"gpu usage: {round(gpu_usage/1024,2)}GB")
evaluate_perplexity(model, tokenizer, args.data_path) evaluate_perplexity(model, tokenizer, args.data_path)
@ -93,10 +99,9 @@ if __name__ == "__main__":
if args.awq_path != "": if args.awq_path != "":
from awq import AutoAWQForCausalLM from awq import AutoAWQForCausalLM
print("awq model",args.awq_path.split('/')[-1])
model = AutoAWQForCausalLM.from_quantized(args.awq_path, fuse_layers=True,device_map={"":'cuda:0'}) model = AutoAWQForCausalLM.from_quantized(args.awq_path, fuse_layers=True,device_map={"":'cuda:0'})
tokenizer = AutoTokenizer.from_pretrained(args.awq_path) tokenizer = AutoTokenizer.from_pretrained(args.awq_path)
print("awq model",args.awq_path.split('/')[-1])
gpu_usage = GPUtil.getGPUs()[0].memoryUsed gpu_usage = GPUtil.getGPUs()[0].memoryUsed
print(f"gpu usage: {round(gpu_usage/1024,2)}GB") print(f"gpu usage: {round(gpu_usage/1024,2)}GB")
evaluate_perplexity(model, tokenizer, args.data_path) evaluate_perplexity(model, tokenizer, args.data_path)
@ -105,11 +110,23 @@ if __name__ == "__main__":
#we will support the autogptq later #we will support the autogptq later
if args.gptq_path != "": if args.gptq_path != "":
from auto_gptq import AutoGPTQForCausalLM from auto_gptq import AutoGPTQForCausalLM
print("gptq model",args.gptq_path.split('/')[-1])
tokenizer = AutoTokenizer.from_pretrained(args.gptq_path, use_fast=True) tokenizer = AutoTokenizer.from_pretrained(args.gptq_path, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(args.gptq_path, device="cuda:0",trust_remote_code=True) model = AutoGPTQForCausalLM.from_quantized(args.gptq_path, device="cuda:0",trust_remote_code=True)
print("gptq model",args.gptq_path.split('/')[-1])
gpu_usage = GPUtil.getGPUs()[0].memoryUsed gpu_usage = GPUtil.getGPUs()[0].memoryUsed
print(f"gpu usage: {round(gpu_usage/1024,2)}GB") print(f"gpu usage: {round(gpu_usage/1024,2)}GB")
evaluate_perplexity(model, tokenizer, args.data_path) evaluate_perplexity(model, tokenizer, args.data_path)
del model
if args.bnb_path != "":
from accelerate.utils import BnbQuantizationConfig
bnb_quantization_config = BnbQuantizationConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4")
print("bnb model",args.gptq_path.split('/')[-1])
# config=AutoConfig.from_pretrained(args.bnb_path,trust_remote_code=True)
# bnb_config=config.quantization_config
tokenizer = AutoTokenizer.from_pretrained(args.bnb_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(args.bnb_path, trust_remote_code=True,)#quantization_config=bnb_config,)
gpu_usage = GPUtil.getGPUs()[0].memoryUsed
print(f"gpu usage: {round(gpu_usage/1024,2)}GB")
evaluate_perplexity(model, tokenizer, args.data_path)
del model

View File

@ -1,8 +1,8 @@
#!/bin/bash #!/bin/bash
awq_path="/root/ld/ld_project/AutoAWQ/examples/awq_cpm_1b_4bit" awq_path="/root/ld/pull_request/MiniCPM/quantize/awq_cpm_1b_4bit"
gptq_path="" gptq_path="/root/ld/pull_request/MiniCPM/quantize/gptq_cpm_1b_4bit"
model_path="" model_path="/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16"
bnb_path="/root/ld/ld_model_pretrain/MiniCPM-1B-sft-bf16_int4"
python quantize_eval.py --awq_path "${awq_path}" \ python quantize_eval.py --awq_path "${awq_path}" \
--model_path "${model_path}" --gptq_path "${gptq_path}" --model_path "${model_path}" --gptq_path "${gptq_path}" --bnb_path "${bnb_path}"